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Chapter 1

Introduction

1.1 Preliminaries

Definition (Differential equation)
A differential equation (DE) is an equation involving a function and its deriva-

tives.

Differential equations are called partial differential equations (PDE) or or-
dinary differential equations (ODE) according to whether or not they contain
partial derivatives. The order of a differential equation is the highest order
derivative occurring. A solution (or particular solution) of a differential equa-
tion of order n consists of a function defined and n times differentiable on a
domain D having the property that the functional equation obtained by substi-
tuting the function and its n derivatives into the differential equation holds for

every point in D.

Example 1.1. An example of a differential equation of order 4, 2, and 1 is

given respectively by

3 4
(ZZ) + % +y = 2sin(z) + cos®(z),
P
0x2 = Oy? ’
yy = 1. *
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Example 1.2. The function y = sin(z) is a solution of

ay\* oy 3
(dx) + et +y = 2sin(x) + cos®(z)

on domain R; the function z = €” cos(y) is a solution of

0%z 0%z

922 "oy =0

on domain R?; the function y = 2./ is a solution of

/

yy =2
on domain (0, 00). *

Although it is possible for a DE to have a unique solution, e.g., y = 0 is the
solution to (y’)2 + 9% = 0, or no solution at all, e.g., (y’)2 + 4% = —1 has no

solution, most DE’s have infinitely many solutions.

Example 1.3. The function y = v/4x + C on domain (—C'/4,0) is a solution
of yy' = 2 for any constant C'. *

Note that different solutions can have different domains. The set of all

solutions to a DE is call its general solution.

1.2 Sample Application of Differential Equations

A typical application of differential equations proceeds along these lines:

Real World Situation

!

Mathematical Model

!

Solution of Mathematical Model

!

Interpretation of Solution
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Sometimes in attempting to solve a DE, we might perform an irreversible
step. This might introduce extra solutions. If we can get a short list which
contains all solutions, we can then test out each one and throw out the invalid
ones. The ultimate test is this: does it satisfy the equation?

Here is a sample application of differential equations.

Example 1.4. The half-life of radium is 1600 years, i.e., it takes 1600 years for
half of any quantity to decay. If a sample initially contains 50 g, how long will
it be until it contains 45 g? *

Solution. Let x(t) be the amount of radium present at time ¢ in years. The rate
at which the sample decays is proportional to the size of the sample at that
time. Therefore we know that dz/dt = kxz. This differential equation is our
mathematical model. Using techniques we will study in this course (see §3.2,
Chapter 3), we will discover that the general solution of this equation is given
by the equation z = Ae*?, for some constant A. We are told that 2 = 50 when
t = 0 and so substituting gives A = 50. Thus x = 50e**. Solving for ¢ gives
t = In(2/50) /k. With 2(1600) = 25, we have 25 = 50¢'%0°% Therefore,

1600k = ln<;> = —1In(2),

giving us k = —1In(2) /1600. When = = 45, we have

1 In(4 1 1 In(1
. n(z/50) _ n(45/50) 1600 n(8/10) 1600 n(10/8)
k —1In(2) /1600 In(2) In(2)
0.105
~ 1600 - 0693 1600 x 0.152 ~ 243.2.

Therefore, it will be approximately 243.2 years until the sample contains 45g

of radium. O

Additional conditions required of the solution (z(0) = 50 in the above ex-
ample) are called boundary conditions and a differential equation together with
boundary conditions is called a boundary-value problem (BVP). Boundary con-
ditions come in many forms. For example, y(6) = y(22); ¥'(7) = 3y(0); y(9) =5
are all examples of boundary conditions. Boundary-value problems, like the one
in the example, where the boundary condition consists of specifying the value

of the solution at some point are also called initial-value problems (IVP).

Example 1.5. An analogy from algebra is the equation

y=y+2 (1.1)
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To solve for y, we proceed as

y—2=./y,
(y—2)> =y, (irreversible step)
v —dy+4=y,
y? —by+4=0,
(y=1)(y—4) =0

Thus, the set y € {1,4} contains all the solutions. We quickly see that y = 4
satisfies Equation (1.1) because

4=V44+2=4=2+4+2=—4=14,
while y = 1 does not because
1=Vi+2=1=3.

So we accept y = 4 and reject y = 1. *



Chapter 2

First Order Ordinary

Differential Equations

The complexity of solving DE’s increases with the order. We begin with first

order DE’s.

2.1 Separable Equations

A first order ODE has the form F(z,y,3’) = 0. In theory, at least, the methods
of algebra can be used to write it in the form™ y' = G(z,y). If G(z,y) can
be factored to give G(z,y) = M (x) N(y),then the equation is called separable.
To solve the separable equation y' = M(x) N(y), we rewrite it in the form

f()y" = g(x). Integrating both sides gives

[t do= [ gta)da.

[rwas= [ 5%

Example 2.1. Solve 2zy + 6z + (;c2 - 4) y' = 0. »

*We use the notation dy/dxr = G(z,y) and dy = G(z,y) dz interchangeably.

5
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Solution. Rearranging, we have

(2* —4)y = —2zy — 6u,

= —2zy — 6z,
Y 2z

y+3 T Ty T +2
In(ly + 3|) = —hrl(’gc2 - 4’) +C,

In(|y +3|) + In(|2* — 4]) =

where C' is an arbitrary constant. Then

(y+3) (2 — 4)[ = 4,
(y+3)(:z: —4) =4,

y+3= Y
where A is a constant (equal to £e“) and z # +2. Also y = —3 is a solution
(corresponding to A = 0) and the domain for that solution is R. O
Example 2.2. Solve the 1vP sin(z) dx 4+ y dy = 0, where y(0) = 1. *

Solution. Note: sin(x) dx + ydy = 0 is an alternate notation meaning the same
as sin(z) + ydy/dx = 0.

We have
ydy = —sin(z) dz,

/ydy—/—sm

? = cos(z) + C1,

y = v/2cos(z) + Cs,
where C] is an arbitrary constant and Cy = 2C;. Considering y(0) = 1, we have
=240, = 1=24+(Cy = (Cy = —

Therefore, y = y/2 cos(z) — 1 on the domain (—/3, 7/3), since we need cos(z) >
1/2 and cos(£n/3) = 1/2.
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An alternate method to solving the problem is

ydy = —sin(x) dz,

T
ydy:/ —sin(z) dz,
0

‘@Nh\@

12
5 27 5 = cos(z) — cos(0),
1
% - g = cos(x) — 1,
1
% = cos(x) — 3
y=/2cos(z) — 1,
giving us the same result as with the first method. O
Example 2.3. Solve y*y' +¢' + 22 +1=0. *
Solution. We have
(' +1)y = —2® -1,
% +y= —%3 —z+C,

where C' is an arbitrary constant. This is an implicit solution which we cannot
easily solve explicitly for y in terms of z. O
2.2 Exact Differential Equations

Using algebra, any first order equation can be written in the form F(x,y) dx +
G(z,y) dy = 0 for some functions F(z,y), G(z,y).

Definition

An expression of the form F(z,y) dx + G(x,y) dy is called a (first-order) differ-
ential form. A differentical form F(z,y)dx + G(x,y)dy is called ezact if there
exists a function g(z,y) such that dg = F dz + G dy.

If w = Fdx+ G dy is an exact differential form, then w = 0 is called an exact
differential equation. Its solution is g = C, where w = dg.
Recall the following useful theorem from MATB42:
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Theorem 2.4
If F and G are functions that are continuously differentiable throughout a

simply connected region, then F dx + G dy is exact if and only if 0G/0x =
OF/0y.

Proof. Proof is given in MATB42. O

Example 2.5. Consider (3x2y2 + xz) dx + (2x3y + y2) dy = 0. Let

W= (3m2y2 + x2) dxr + (2x3y + y2) dy

F G
Then note that
oG 62 OF
— =6zy = .
ox Y oy

By THEOREM 2.4, w = dg for some g. To find g, we know that

6—g = 32%y% + 22, (2.1a)
dg 3 2

— =2 . 2.1b
oy =~ YTy (2.1b)

Integrating Equation (2.1a) with respect to = gives us

3
x
g =23y + 3 + h(y). (2.2)

So differentiating that with respect to y gives us

Eq. (2.1b)
p) dh
g 3
e — =
By oYy + dy’
dh
20%y +y° =220y + ——,
dy
th =9
y
y?)
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for some arbitrary constant C. Therefore, Equation (2.2) becomes
3 3
3,2, T Y
=’y + - +5 +C
g Y 3 3
Note that according to our differential equation, we have
3 3

dl 2342 @;3 yj _ PSR : 32, Y Y _ v
y+3+3+C —Owhlchlmpllesxy+3+3+C—C

for some arbitrary constant C’. Letting D = C’ — C, which is still an arbitrary
constant, the solution is

3 3
W+ L b
3

o z
vt

Example 2.6. Solve (322 + 2zy?) dz + (2z%y) dy = 0, where y(2) = —3. *
Solution. We have
/ (3:172 + 2:1:y2) de = 2* + 2%y + C

for some arbitrary constant C. Since C is arbitrary, we equivalently have 23 +

2?y? = C. With the initial condition in mind, we have
84+4-9=C= C =44.

Therefore, 22 + 22y? = 44 and it follows that

+v44 — 23

Y= D)

x

But with the restriction that y(2) = —3, the only solution is

V44 — 3
Yy=—-———"3
x

on the domain (—\3/@, \3/@) \ {0}. O

Let w = Fdx + Gdy. Let y = s(z) be the solution of the DE w = 0, i.e.,
F+ Gs'(z) = 0. Let yo = s(xo) and let v be the piece of the graph of y = s(z)
from (z9,yo) to (x,y). Figure 2.1 shows this idea. Since y = s(z) is a solution

to w = 0, we must have w = 0 along . Therefore, f,yw = 0. This can be seen
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(20) ” y=e)
q
(z,)
Y1 A o
L
(xo,yo)
T

Figure 2.1: The graph of y = s(z) with 7 connecting (zo, yo) to (z,y).

by parameterizing v by v(z) = (x, s(x)), thereby giving us

/wz/ Fdx—|—Gs’(x)da:=/ 0dx = 0.
¥ xo Zo

This much holds for any w.
Now suppose that w is exact. Then the integral is independent of the path.
Therefore

0:/w:/ Fdx+Gdy+/ Fdx+Gdy
Yy 71 2
Yy xr
~ [ Goydy+ [ Play)ds
Yo zo
We can now solve Example 2.6 with this new method.

Solution (Alternate solution to Example 2.6). We simply have

4 T

0:/ 2.22ydy+/ (32 + 22y°) da
-3 2

— 4y2 _ 4(_3)2 4 333 4 m2y2 _ 23 _ 22y2

= 4y? — 36 4 2® + 22y — 8 — 4%,
finally giving us =3 + 22y? = 44, which agrees with our previous answer. O

Remark. Separable equations are actually a special case of exact equations, that

is,

fWy' =9g(x) = —g(x)de+ f(y)dy = 0 = %f(y) =0= 5 (—g(x)).
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So the equation is exact. O

2.3 Integrating Factors

Consider the equation w = 0. Even if w is not exact, there may be a function
I(x,y) such that Iw is exact. So w = 0 can be solved by multiplying both sides
by I. The function I is called an integrating factor for the equation w = 0.

Example 2.7. Solve y/x? +1+y'/z = 0. *

Solution. We have .
(%—Fl)dﬂc—i-fdyzo.
T T

()24 - s ]

So the equation is not exact. Multiplying by z? gives us

We see that

(y+x2)dx+mdy20,

£E3
d —)=0
(an+ %) =0,

3
T
—=C

a:y+3

for some arbitrary constant C. Solving for y finally gives us

3" ¢

c 2
x

There is, in general, no algorithm for finding integrating factors. But the
following may suggest where to look. It is important to be able to recognize

common exact forms:

zdy +ydr = d(zy),

vdy —ydz _ ry
x? =d x)’
xdx +ydy 4 In(z? + y?)
$2+y2 - 2 ’
rdy —ddx

22 Yy (ay dx + bx dy) = d(m"’yb) .
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Example 2.8. Solve (x2y2 + y) dz + (2x3y - x) dy = 0. *
Solution. Expanding, we have
22y dx + 223y dy + ydx — x dy = 0.
Here, a = 1 and b = 2. Thus, we wish to use
d(xyz) = y? dx + 2y dy.

This suggests dividing the original equation by z? which gives

ydr —xdy

v dx + 2xy dy + 5 0.
x

Therefore,
xy2+£=C, x # 0,
x

where C' is an arbitrary constant. Additionally, ¥ = 0 on the domain R is a

solution to the original equation. %
Example 2.9. Solve ydx — xdy — (x2 + y2) dx = 0. *
Solution. We have
ydr —xdy
—— —dx =0,
x? 4+ y?

unless z = 0 and y = 0. Now, it follows that

— tan 1(%) —xz=0C,
tan~! (%) =—-C—u,
tan~! (%) =D-z, (D=-0C)
% =tan(D — z),
y = xtan(D — x),

where C' is an arbitrary constant and the domain is
D—x;«é(Qn—i—l)g, x#(?n—kl)%
for any integer m. Also, since the derivation of the solution is based on the

assumption that x # 0, it is unclear whether or not 0 should be in the domain,

i.e., does y = xtan(D — x) satisfy the equation when = = 0?7 We have y — xy’ —
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(22 +y?) =0. If 2 = 0 and y = ztan(D — z), then y = 0 and the equation is
satisfied. Thus, 0 is in the domain. O

Proposition 2.10
Let w = dg. Then for any function P : R — R, P(g) is exact.

Proof. Let Q = [ P(t)dy. Then d(Q(g)) = P(g)dg = P(g9)w. O

To make use of Proposition 2.10, we can group together some terms of w
to get an expression you recognize as having an integrating factor and multiply
the equation by that. The equation will now look like dg + h = 0. If we can
find an integrating factor for h, it will not necessarily help, since multiplying by
it might mess up the part that is already exact. But if we can find one of the
form P(g), then it will work.

Example 2.11. Solve (:E — y:cQ) dy +ydx = 0. *
Solution. Expanding, we have

ydx + xdy —yz? dy = 0.
—_—

d(zy)

Therefore, we can multiply teh equation by any function of zy without disturb-
ing the exactness of its first two terms. Making the last term into a function of
y alone will make it exact. So we multiply by (xy)fZ, giving us
dr+xd 1 1
Y Cdy=0= —— —In(}y) = C,
z?y? y Ty
where C' is an arbitrary constant. Note that y = 0 on the domain R is also a

solution. o
Given
Mdz + N dy =0, (%)
we want to find I such that IM dz + IN dy is exact. If so, then

) )
g IN) = 5 (T0).

N—_——
IeN+IN: 1, M41M,
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If we can find any particular solution I(z,y) of the PDE
I,N + IN, = I,M + IM,, (%)

then we can use it as an integrating factor to find the general solution of (x).
Unfortunately, (xx) is usually even harder to solve than (x), but as we shall see,

there are times when it is easier.

Example 2.12. We could look for an I having only z’s and no y’s? For exam-

ple, consider I, = 0. Then

M, — N,

Iy
I,N + IN, = IM, implies — =
+ y 1mplies 7 N

This works if (M, — N,) /N happens to be a function of « alone. Then

[= el Mt ar

Similarly, we can also reverse the role of « and y. If (N, — M,) /M happens to

be a function of y alone, then

Ng—M
ef L dy

works. *

2.4 Linear First Order Equations
A first order linear equation (n = 1) looks like
y + P(z)y = Q).
An integrating factor can always be found by the following method. Consider

dy + P(x)ydz = Q(z) dx,
(P(x)y — Q(x))dx+ dy =0.
—_— —~—
M(z,y) N(z,y)
We use the DE for the integrating factor I(z,y). The equation IM dx + IN dy

is exact if
I,N+IN, =I,M + IM,.
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In our case,
I + 0 =1, (P(z)y — Q(z)) + IP(). (%)

We need only one solution, so we look for one of the form I(z), i.e., with I,, = 0.

Then (*) becomes
dl

— =IP(x).
dz (z)
This is separable. So

dI

5 = P(z)dx,

In(|1]) z/P(x)dx—i—C,
|I|:efP(ac)dac7 L >0
IzefP(:L’)dz'

We conclude that e/ P(#) 4% is an integrating factor for 3’ + P(z)y = Q(x).

Example 2.13. Solve y' — (1/x)y = 2, where z > 0. *

Solution. Here P(z) = —1/x. Then

I = efP(a:)dx _ eff%dz :efln(|a:|)da: _ - _ =

where x > 0. Our differential equation is

rdy —ydx e
— .

Multiplying by the integrating factor 1/x gives us

rdy —ydx

> = 22 dz.
Then

3
Yy T
Z="4¢,
T 3+

3

T

=—+4+C

Y 3+ T

on the domain (0, 00), where C' is an arbitrary constant (x > 0 is given). O
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In general, given 3’ + P(z)y = Q(x), multiply by el P@)dz ¢4 ohtain

efP(z)dzy/+efP(z)dm P(a:)y _ Q(x)efP(z)dx

d(yef P(x) dm)/dfr

Therefore,
yefP(m)dm _ /Q(x)efP(:c)dm de + 07

y= 67fP(:r)dz /Q(I)efP(z)dz dl‘+067fp(z)dz,

where C' is an arbitrary constant.

Example 2.14. Solve xy’ + 2y = 422 *

Solution. What should P(x) be? To find it, we put the equation in standard
form, giving us
2
y + —y = 4x.
x

Therefore, P(z) = 2/x. Immediately, we have

I = oJ@/2)dz _ Jn(2®) _ 2
Multiplying the equation by z? gives us

22y + 2zy = 423,

22y =2t + O,
C
Y= $2 + o
T
where C' is an arbitrary constant and z # 0. O
Example 2.15. Solve e ¥ dy + dx + 2x dy = 0. *

Solution. This equation is linear with x as a function of y. So what we have is

d
é +2z=—e",



2.5. SUBSTITUTIONS 17
where I = e/ 29 = ¢2v, Therefore,

d
ezy—x + 226
dy

—eY,
ze® = —e¥ + C,

where C is an arbitrary constant. We could solve explicitly for y, but it is messy.
The domain is not easy to determine. O

2.5 Substitutions

In many cases, equations can be put into one of the standard forms discussed

above (separable, linear, etc.) by a substitution.

Example 2.16. Solve y” — 2y’ = 5. *

Solution. This is a first order linear equation for y’. Let w = y’. Then the
equation becomes

u —2u =5.
The integration factor is then I = e~ /29 = ¢=2%_ Thus,

! —2x

u'e T

5
ue % = —56_21 + C,

where C is an arbitrary constant. But u = 3/, so

5 C 5
y=—50+ 5"+ 0 =gt Cre® + G

on the domain R, where C; and C are arbitrary constants. O

We now look at standard substitutions.

2.5.1 Bernoulli Equation

The Bernoulli equation is given by

d
2+ Py = Q)"
Let z = y*~". Then
dz dy

= (1 - n) y—n77

dx dx
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giving us
d
_nﬁ + P(x)y' " = Q(x),
1 dz
—— 4 P): = Q).
dz
—+ (1 —n)P(x)z=(1-n)Q(z),
dx
which is linear in z.
Example 2.17. Solve ¢/ + zy = zy°. *

Solution. Here, we have n = 3. Let z = y~2. If y # 0, then

dz _ 9 73d7y.

dz y dx

Therefore, our equation becomes

—§+xy_ =x,

2 —2xy = 2.

We can readily see that I = e~/ 2¢d¢ = ¢=2*  Thuys,

T $2

—z2 _ .2
e vz —2zxe = —2xe " |

2 2

e T z=e" +0C,
z:1+C’ew2,

where C is an arbitrary constant. But z = y~2. So

1

V1+ Cer®’

y==+

The domain is
R C > -1,

|z| > y/—In(—-C), C< -1

An additional solution is y = 0 on R. O
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2.5.2 Homogeneous Equations

Definition (Homogeneous function of degree n)
A function F'(z,y) is called homogeneous of degree n if F(Ax, \y) = A\"F(x,y).
For a polynomial, homogeneous says that all of the terms have the same degree.

Example 2.18. The following are homogeneous functions of various degrees:

320 + 5aty? homogeneous of degree 6,
325 + 53> not homogeneous,
x\/m homogeneous of degree 2,
sin(g) homogeneous of degree 0,
- i y homogeneous of degree —1. *

If F' is homogeneous of degree n and G is homogeneous of degree k, then

F/G is homogeneous of degree n — k.

Proposition 2.19

If F' is homogeneous of degree 0, then F' is a function of y/x.

Proof. We have F(Azx,\y) = F(z,y) for all \. Let A = 1/z. Then F(z,y) =
F(1,y/x). O

Example 2.20. Here are some examples of writing a homogeneous function of

degree 0 as a function of y/z.

S o (3]
T )

v taty _ (y/x)’ + (y/x) i}
2%y + 28 (y/m)+1

Consider M(x,y)dx + N(x,y)dy = 0. Suppose M and N are both homoge-

neous and of the same degree. Then

@_ M
dr = N’
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This suggests that v = y/x (or equivalently, y = vz) might help. In fact, write

M(z,y) :R(y).

N(z,y) x
Then i
Y Y
de (x) = R(v)
v+x%
Therefore,
xd—v =R(w)—v
dx ’
dv _ dic
Rv)—v x’

which is separable. We conclude that if M and N are homogeneous of the same

degree, setting y = vx will give a separable equation in v and x.

Example 2.21. Solve zy?dy = (:r3 + y3) dx. *
Solution. Let y = vx. Then dy = vdx + x dv, and our equation becomes

20’z (vdz + zdv) = (2° 4+ v*2?) da,

2203 dx + %% dv = 2% dx + 0322 du.

Therefore, x = 0 or v2dv = dx/x. So we have

o3
3= In(|z]) + C = In(|z|) + In(|A]) = In(JAz]) = In(Ax).
——

C

where the sign of A is the opposite of the sign of x. Therefore, the general

1/3

solution is y = x (31n(Ax))’°, where A is a nonzero constant. Every A > 0

yields a solution on the domain (0, 00); every A < 0 yields a solution on (—o0, 0).

In addition, there is the solution y = 0 on the domain R. O

2.5.3 Substitution to Reduce Second Order Equations to
First Order

A second order DE has the form

F@y",y',y,x) =0.
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If it is independent of y, namely, F(y”,y’,z) = 0, then it is really just a first

order equation for ¥’ as we saw in earlier examples.

Consider now the case where it is independent of z, namely, F'(y”,vy’,y) = 0.

Substitute v = dy/dx for z, i.e., eliminate = between the equations

Py dy
FIEY %Y ) =0
(de’dac’y)

and v = dy/dx. Then

d2y_dv_dvdy_dv

dx?  dz  dydz  dy

d*y dy dv
F{—,— =0~ F|— =0.

This is a first order equation in v and y.

Therefore,

Example 2.22. Solve y” =4 (y’)3/2 Y. *
Solution. Let v = dy/dx. Then
d’y  dv
eI _ 27,
dz? dy
and our equation becomes
d .
d—Zv = 4v‘3/2y,
dv
— =4yd >0
Jo yay, v=U,
2\/5 = 2y2 + Ch,

\/’E:y2+c2a
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where C is an arbitrary constant and Co = C7/2. But v = dy/dx, so we have

dy 5 2
d.’IJ - ( + C2) 9
__ dy

(y2 + 02)2 ’

Z%(mr%ﬁ%)ﬂﬁ%)+%,65>m

2

= —ﬁ—FCg, Cy =0, O
+C37 CQ <O

N S
2(—C2)37 " PPHC
Next consider second order linear equations. That is,
P(z)y" + Q(z)y' + R(z)y = 0.

We can eliminate y by letting y = e”. Then 3’ = e¥v’ and 3" = e (v')2 +evv”.

The equation then becomes

P(x) (e” (11')2 + e”v”) + Q(x)e’v + R(z)e” =0,
which is a first order equation in v’.
Example 2.23. Solve 2?y" + (z — 2?) y' — >y = 0. *
Solution. Let y = e¥. Then the equation becomes

22’ (V)7 + 220" + (z—2?) v — e’ = 0.
Write z = v’. Then

22y + 2?22+ (1 —2)zz = .

Now we are on our own—there is no standard technique for this case. Suppose
we try u = zy. Then z = u/x and
/ U 1 /

2=t
x x

Then it follows that

' + u? — zu = e2*.

This is a bit simpler, but it is still nonstandard. We can see that letting u = se”
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will give us some cancellation. Thus, v’ = s’e* + se® and our equation becomes

zs'e® + zst™ + 52 — zse® = €27,
rs' 4 s%e” = e”,
zs’ =€ (1—s7),
s’ ev
1— 52 x’

1 1+s e
=1 = [ —dx.
QH(‘1—5> /xdx

Working our way back through the subsitutions we find that s = zze™ so our

;1n<’1+zme ) /—dw

1—zze
Using algebra, we could solve this equation for z in terms of x and then integrate

solution becomes

the result to get v which then determines y = e¥ as a function of x. The
algebraic solution for z is messy and we will not be able to find a closed form
expression for the antidervative v, so we will abandon the calculation at this
point. In practical applications one would generally use power series techniques
on equations of this form and calculate as many terms of the Taylor series of

the solution as are needed to give the desired accuracy. O

Next consider equations of the form
(a1 + b1y + 1) dz + (agx + bay + o) dy = 0.

If ¢4 = ¢ = 0, the equation is homogeneous of degree 1. If not, try letting
T =x—hand y =y —k. We try to choose h and k to make the equation
homogeneous. Since h and k are constants, we have dT = dx and dy = dy.

Then our equation becomes
(CLl"f + CLlh + blg + blk + Cl) dzx + (agf + th + bgy + bgk + 62) dy =0.

We want a1h 4+ b1k = —c; and ash + bok = —co. We can always solve for h and
k, unless

a1 bl —0

az b
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So suppose

ay b1 —0

az by

Then (az,b2) = m(a1,b1). Let z = a1z + byy. Then dz = a;de + by dy. If
b1 # 0, we have

dy:clz—alclac7
b1
dz—ayd
(z—i—cﬂdm—i—(mz—&—@)%zo,
1
z—|—cl—|—ﬂ dx + Uil dx =0,
b1 b1
bydr — — mz —+ co

——————— az.
z+cl+a1/b1

This is a separable equation.
If by = 0 but by # 0, we use z = asx + boy instead. Finally, if both b; = 0

and b, = 0, then the original equation is separable.



Chapter 3

Applications and Examples
of First Order Ordinary
Differential Equations

3.1 Orthogonal Trajectories

An equation of the form f(z,y,C) = 0 determines a family of curves, one for
every value of the constant C. Figure 3.1 shows curves with several values of
C. Differentiating f(x,y,C) = 0 with respect to x gives a second equation

Figure 3.1: Graphs of 22 + y? — C = 0 with various values of C.

25
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g(z,y,C, dy/dx) = 0, which is explicitly given by

_of of dy
9= 5 (z,y,C) + By (x,y,C) I

Example 3.1. We have

d
z? + ¢ + Cz* = 0 implies 2z + 3y2d—y L4022 = 0.
x

We can eliminate C between the equations f = 0 and g = 0, that is,

22 + y?
f=0=C=- s
Therefore,
d 2 3
g=0— 232 Y 4TV
dx T

This yields a first order DE, where the solution includes the initial family of

curves. *

So just as a first order DE usually determines a one-parameter family of

curves (its solutions), a one-parameter family of curves determines a DE.

A coordinate system (Cartesian coordinates, polar coordinates, etc.) consists
of two families of curves which always intersect at right angles. Two families of
curves which always intersect at right angles are called orthogonal trajectories
of each other. Given a one-parameter family of curves, we wish to find another
family of curves which always intersects it at right angles.

Example 3.2. Find orthogonal trajectories of y = C'sin(x). *

Solution. Figure 3.2 shows the plot of y = C'sin(x) with several values of C.
We have C = y/sin(z), so it follows that

dy _ cos(x)
I = /?’( )cos(z) = ysin(x) = y cot(x).
y/ sin(x

Two curves meet at right angles if the product of their slopes is —1, i.e., Mpew =

—1/meia. So orthogonal trajectories satisfy the equation

dy 1 tan(z)
dr  ycot(x) y
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ﬁ

l%/
.

X
n 3§

Figure 3.2: A plot of the family y = C'sin(z) (in black) and its orthogonal
trajectories (in gray).

-5+

This is a separable equation, and we quickly have

ydy = —tan(z),
v
2

= In(Jcos(z)]) + C,

y = £1/2In([cos(z)|) + C1,

where C'y = 2C' is also an arbitrary constant. O

3.2 Exponential Growth and Decay

There are many situations where the rate of change of some quantity z is pro-
portional to the amount of that quantity, i.e., dx/dt = kx for some constant k.

The general solution is = Ae*t.

1. Radium gradually changes into uranium. If x(t) represents the amount of
radium present at time ¢, then dxz/dt = kz. In this case, k < 0.

2. Bank interest. The amount of interest you receive on your bank account is
proportional to your balance. In this case, k > 0. Actually, you do not do
quite this well at the bank because they compound only daily rather than
continuously, e.g., if we measure this time in years, our model predicts
that @ = xge*, where zg is your initial investment and & is the interest

k/’ n
x:xo(l—l—t) ,
n

rate. Actually, you get
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where n is the number of interest periods throughout the year. Typically,
n = 365 (daily interest), but the difference is small when n = 365. Note
that lim,, o (1 + kt/n)" = e

3. Population growth of rabbits. The number of rabbits born at any time
is roughly proportional to the number of rabbits present. If x(t) is the
number of rabbits at time ¢, then dx/dt = kx with k > 0. Obviously, this

model is not accurate as it ignores deaths.

Example 3.3. The half-life of radium is 1600 years, i.e., it takes 1600 years for
half of any quantity to decay. If a sample initially contains 50 g, how long will

it be until it contains 45 g? *
Solution. Let x(t) be the amount of radium present at time ¢ in years. Then
we know that dz/dt = kx, so z = xpe’*. With 2(0) = 50, we quickly have

x = 50e*. Solving for t gives t = In(x/50) /k. With z(1600) = 25, we have
25 = 50e'%90%  Therefore,

1600k = ln(é) = —1In(2),

giving us k = —1In(2) /1600. When z = 45, we have

1 In(4 1 1 In(1
. n(z/50) _ n(45/50) 1600 n(8/10) 1600 n(10/8)
k —In(2) /1600 In(2) In(2)
0.105
~ 1600 - 0693~ 1600 x 0.152 ~ 243.2.

Therefore, it will be approximately 243.2 years until the sample contains 45 g

of radium. O

3.3 Population Growth

Earlier, we discussed population growth where we considered only births. We
now consider deaths also. Take, as our model, the following.

Let N(t) be the number of people at time ¢. Assume that the land is intrinsi-
cally capable of supporting L people and that the rate of increase is proportional
to both NV and L — N. Then

AN
—r =kN(L-N),
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and the solution is I

N =
1+ (L/No — 1) e—FLt’

where k is the proportionality constant.

3.4 Predator-Prey Models

Example 3.4 (Predator-Prey). Consider aland populated by foxes and rab-
bits, where the foxes prey upon the rabbits. Let x(t) and y(¢) be the number
of rabbits and foxes, respectively, at time ¢. In the absence of predators, at any
time, the number of rabbits would grow at a rate proportional to the number
of rabbits at that time. However, the presence of predators also causes the
number of rabbits to decline in proportion to the number of encounters between
a fox and a rabbit, which is proportional to the product z(t)y(t). Therefore,
dx/dt = ax — bxy for some positive constants a and b. For the foxes, the
presence of other foxes represents competition for food, so the number declines
proportionally to the number of foxes but grows proportionally to the number
of encounters. Therefore dy/dt = —cx + dxy for some positive constants ¢ and
d. The system

d—x—ax—bx
dt_ yv
d
d—g:—cy—i—dxy

is our mathematical model.

If we want to find the function y(z), which gives the way that the number
of foxes and rabbits are related, we begin by dividing to get the differential

equation
dy  —cy+dry
dr  ax —bxy

with a, b, ¢, d, z(t), y(t) positive.

This equation is separable and can be rewritten as

Yy T

(a—by)dy (—c+dx) dx.

Integrating gives
aln(y) — by = —cln(x) + dx + C,
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or equivalently
yae_by = kx~Ce™ (3.1)

for some positive constant k = €.

The graph of a typical solution is shown in Figure 3.3.

Figure 3.3: A typical solution of the Predator-Prey model with a = 9.4, b = 1.58,
c=6.84,d=1.3, and k = 7.54.

Beginning at a point such as a, where there are few rabbits and few foxes, the
fox population does not initially increase much due to the lack of food, but with
so few predators, the number of rabbits multiplies rapidly. After a while, the
point b is reached, at which time the large food supply causes the rapid increase
in the number of foxes, which in turn curtails the growth of the rabbits. By
the time point c is reached, the large number of predators causes the number of
rabbits to decrease. Eventually, point d is reached, where the number of rabbits
has declined to the point where the lack of food causes the fox population to

decrease, eventually returning the situation to point a. *

3.5 Newton’s Law of Cooling

Let T and T be the temperature of an object and its surroundings, respectively.

Let Tp and T, be initial temperatures. Then Newton’s Law of Cooling states
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that
ar

dt
As T changes, the object gives or takes heat from its surroundings. We now

k(T,—T), k>0.

have two cases.
CASE 1: Ty is constant. This occurs either because the heat given off is
transported elsewhere or because the surroundings are so large that the contri-

bution is negligible. In such a case, we have

T
e — kT
ar

which is linear, and the solution is
T=Toe ™ +T,(1—e").

CASE 2: The system is closed. All heat lost by the object is gained by its

surroundings. We need to find T as a function of T'. We have

heat gained

change in temperature = .
& P weight x specific heat capacity

Therefore,

T-T, T,—T,

)

wc WgCg
wce
Ts:Tso+ c (TO_T)v
dT
+1<;(1+ we )T:k(TSO—f— o T0>.
dt WsCg WsCg

This is linear with different constants than the previous case. The solution is

Tso + w.e; 1o k(122 )e
T=T+ (ch> (l—e (+'wscs)),

3.6 Water Tanks

Example 3.5. A tank contains a salt water solution consisting initially of 20 kg
of salt dissolved into 10 ¢ of water. Fresh water is being poured into the tank
at a rate of 34/min and the solution (kept uniform by stirring) is flowing out at
24/min. Figure 3.4 shows this setup. Find the amount of salt in the tank after

5 minutes. *
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3 litre/min

i

2 litre/min

Figure 3.4: Fresh water is being poured into the tank as the well-mixed solution
is flowing out.

Solution. Let Q(t) be the amount (in kilograms) of salt in the tank at time ¢

(in minutes). The volume of water at time ¢ is
10+ 3t —2t =10+t

The concentration at time ¢ is given by

amount of salt @
volume 10+t
kg per litre. Then
d 2
aQ = — (rate at which salt is leaving) = 9 . 2= fiQ.
dt 10+t 10+ ¢

Thus, the solution to the problem is the solution of

aQ _ 29
dt 10+t

evaluated at ¢ = 5. We see that it is simply a separable equation.
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To solve it, we have

Q 10+ ¢’
@__z/i
Q 104+¢

In(|Q|) = —2In([10 + ),
n(|Q) = ln<|10 +t\_2) el

dQ __, dt

where C'is a constant. Thus,

In(Ql) = (10 +¢/7%) + €,
zln(A|10+tr2),
Q| = A|10+¢ 2

where A = e¢“. But Q > 0 (we cannot have a negative amount of salt) and ¢ > 0

(we do not visit the past), so we remove absolute value signs, giving us
Q=A10+1)">%.

Initially, i.e., at ¢ = 0, we know that the tank contains 20 kg of salt. Thus,
the initial condition is Q(0) = 20, and we have

A A
+

Our equation therefore becomes

2000
Q(t) = m

Figure 3.5 shows a plot of the solution. Evaluating at ¢ = 5 gives

2000 80 80

Therefore, after 5 minutes, the tank will contain approximately 8.89 kg of salt.{

Additional conditions desired of the solution (Q(0) = 20) in the above exam-
ple) are called boundary conditions and a differential equations together with

boundary conditions is called a boundary-value problem (BVP).
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20

15+

10+

1 1 1 1 1 t
0 100 200 300 400 500 600

Figure 3.5: The plot of the amount of salt Q(¢) in the tank at time ¢ shows that
salt leaves slower as time moves on.

A= (10%)2 is the general solution to the DE ‘fj—? = —lzo—‘ﬁt. Q= (12(3??)2 is the
solution to the boundary value problem % = —120—‘?;.; Q(0) = 200. Boundary-

value problems like this one where the boundary conditions are initial values of

various quantities are also called initial-value problems (IVP).

3.7 Motion of Objects Falling Under Gravity

with Air Resistance

Let z(t) be the height at time ¢, measured positively on the downward direction.
If we consider only gravity, then

A2z

T ae
is a constant, denoted g, the acceleration due to gravity. Note that F' = ma =
mg. Air resistance encountered depends on the shape of the object and other
things, but under most circumstances, the most significant effect is a force op-

posing the motion which is proportional to a power of the velocity. So

F =mg— ko™
~~

ma

Pz k (dr)\"
a9 m\ar )

and
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which is a second order DE, but there is no z term. So it is first order in z’.

Therefore,
dv kE .
—=g——v".
dt g m
This is not easy to solve, so we will make the simplifying approximation that

n =1 (if v is small, there is not much difference between v and v™). Therefore,

we have
v _ kK
a9y
ok
dt  m 9,

The integrating factor is

Therefore,

d k
(d/lt) + m”) ekt/m :gek:t/m’

ek:t/m,u _ %ekt/m + C,

v = % + Cekt/m,

where C' is an arbitrary constant. Note that

b
v(O)—voz>v0=?g+C:>C—vo—m?.
So we have
_mg _ MG\ —kt/m
-~k +<”O k:)e '
dx/dt

Note that

Thus, we finally have

B Y ) Y )
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3.8 Escape Velocity

Let z(t) be the height of an object at time ¢ measured positively upward (from
the centre of the earth). Newton’s Law of Gravitation states that

kmM
~~ a2
where m is the mass of the object, M is the mass of the Earth, and k£ > 0. Note
that

1" — _@
22
We define the constant g known as the ”acceleration due to gravity” by 2" = —g
when © = R, where R = radius of the earth. So k = gR?/M. Therefore
2" = —gR?/x?. Since t does not appear, letting v = dx/dt so that

A’z _ dv dzx dv

a2 " dwdt  dx'

will reduce it to first order. Thus,

v gt
de a2’
R2
vdv = —g—z dx,
T

—
<
QU
<
I
—
|
Q
L5
QU

2 2

v gR

2" 1

2 z T
for some arbitrary constant C'. Note that v decreases as = increases, and if v is
not sufficiently large, eventually v = 0 at some height ;.. So C = —gR? / Tmax
and

Suppose we leave the surface of the Earth starting with velocity V. How far
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will we get? (v =V when z = R). We have

1 1
V2=2R%¢| = —
g(-R xmax),

V2 1 1

2R%¢ R Ta
1 1 V2  2Rg-V?
Tmax “ R 2R%g - 2R2g
2R%g
2Rg — V2’

Tmax =

That is, if V2 < 2Rg, we will get as far as

2R%g
2Rg — V2

and then fall back. To escape, we need V' > v/2Rg. Thus, the escape velocity
is v/2Rg =~ 6.9 mi/s, or roughly 25000 mph.

3.9 Planetary Motion

Newton’s law of gravitation states that

ma

Suppose we let a,, = —k/r? and ag = 0. Then
a, = ag cos(f) + a, sin(6), ag = —ay sin(8) + a, cos(6).
Let x = rcos(f) and y = rsin(0). Then

x' = 1" cos(f) — rsin(9)¢’,

ag = 2’ = 1" cos(0) — ' sin(0)0' — ' sin(0)0' — r cos() (¢')° — rsin(6)6”,

y' = r’sin(6) + rcos(0)¢’,

ay =y =r"sin(0) + 1 cos(8)0 + ' cos(0)8 — rsin(6) (') + r cos(6)”
= " sin(0) + 2760’ cos(0) — (') rsin(0) + 0"r cos(6).
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Now a, becomes
a, = 1" cos®(0) — 26’ sin(6) cos(6) — (6')° r cos?(6) — 6" sin(6) cos(6)
+ 1" sin2(6) + 20’ sin(6) cos(0) — (0')° rsin(6) + 0”7 sin(6) cos(0)
=" —(0)r
and ag becomes

ag = —r" sin(6) cos(0) + 20 sin®(6) + (6')* r sin(0) cos(6) + 6"r sin?(0)
+ 7" sin(0) cos(6) + 21’0’ cos?(0) — (') r sin(6) cos(0) + 0”7 cos®(6)
=2r'0" +6"r.

Note that &
2
-0 = (4
2r'0" + 0"r = 0. (**)

Equation (xx) implies that*

2’0 + 0" r? =0 = r2¢' = h.
—_—
d(r29")

We want the path of the planet, so want an equation involving r and 6. There-

fore, we eliminate ¢ between Equation () and 720" = h. Thus,

_drg_drh
S do dor?’
_d*r,h drh , d?rh h dr h dr h

A2 2 Tder? T Aoy a2 Tdor3dor?

_ m 2\ 1
o2 \ 3\ do r2do2 |-

/
r

1

*Note that

0 rr(6) 0 .1(0\2
A:// rdrd@:/ ") 4o,
0070 0, 2

so dA/df = r(0)?/2. So in our case, A’ = h/2. Therefore, A = ht/2, which is Kepler’s Second
Law (area swept out is proportional to time).
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Let uw = 1/r. Then

dui 1 dr
do —  r2de’
d2u_ 2 [dr\? 1d2r_ r2r"_ 7!
d62_r3<d9> Cr2de2 T R2 T hZu?’

Therefore, Equation () implies that

@ (h)zr_ k

do? 72 r2’
d?u
2,2 312 2
—h*u gz U he=—ku®, u#0,
Pu  _F
a0z " T 2
Therefore,
k . k
= Bcos(0 —6) + i Cy sin(f) + Cq cos(6) + =t
1/r
where
_ 1 _ 1
"= k/h2 4+ Bcos(f — &)  k/h2+ Cysin(f) + Cy cos(6)
Therefore,

Er+Ciz+Cay

%r + Cyrsin(f) + Carcos(0) = 1,

%7‘ =1-Ciz — Csz,
k2

7@ +y’) =(1-C - Coy)?,

which is the equation of an ellipse.

3.10 Particle Moving on a Curve

Let 2(t) and y(t) denote the x and y coordinates of a point at time ¢, respectively.
Pick a reference point on the curve and let s(t) be the arc length of the piece
of the curve between the reference point and the particle. Figure 3.6 illustrates
this idea. Then
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Reference point

Particle

Figure 3.6: A particle moving on a curve.

ds d?s
V= ||a||:azﬁ.
The vector v is in the tangent direction. The goal is to find components a in
the tangential and normal directions. Let 6 be the angle between the tangent
line and the z axis. Then

dr _@

cos(f) = T sin(f) = Ts
s s

In the standard basis, we have a = (a,, a,), where

d’z d?y

“w=Gp W g

To get components in T, n basis, apply the matrix representing the change of
basis from T, n to the standard basis, i.e., rotation by —#6, i.e.,

[ cos(f) sin(6) ] [ ay ] B [ ag cos(f) + ay sin(6)

—sin(f) cos(0) ay —ay sin(6) + a,, cos(6)
ie.,
ar = ay cos(f) + a, sin(f) = aw% + ay%
and
an = —ag sin(f) + a, cos(f) = Gylz — Galy

v

Also, we have v =  [vZ + vZ, so

2 dvy, dwv,
d’s dv  2vp G + 2vy 5 _ Vzly +Uyay ar

P TR o s y
x y
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But this was clear to start with because it is the component of a in the tangential
direction that affects ds/dt.

‘We now have

,_dy _ dy/dt vy

Y=~ de/dt v’

d ) dv, .
"no__ vz% — Uyddv:cl _ vf%c% — vyd;tl % _ VaQy — Uyle @
Yy = 02 - 2 - 3 o3
x z z ®
where a, = y"v2 /v and
dr drds dz
Vp — — = —— = —
Tdt  dsdt  ds
SO 3
d,
. y// (Tﬁ) ’03 _ y//U2 B y// v2
T T ds/de) 22
(1+w7)
Let 3/2
(1 + (y’)z)
R=~— (3.2)

Y

so that an = v?/R. The quantity R is called the radius of curvature. It is the
radius of the circle which mostly closely fits the curve at that point. This is

shown in Figure 3.7. If the curve is a circle, then R is a constant equal to the

Figure 3.7: The radius of curvature is the circle whose edge best matches a
given curve at a particular point.

radius.

Conversely, suppose that R is a constant. Then

Ry = (1+6)")"
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Let z = y/. Then

R = (1+ 22)3/2
and
Rdz
dr = 373
(1+22)
SO
sc*/ R L Rz
(1+22)%? V1422 ’
r— A= R ,
(1/2)2+1
1\? 2
e
z (z—A)
(1)2_ R2 R —(z-A)
z (x — A)? (@—4)?7 7
22 — (z — A)*
R2 — (z — A’
P r—A
dy/dx R2 — (J} — A)Q
Therefore,

Suppose now that the only external force F acting on the particle is gravity,

i.e., F = (0, —mg). Then in terms of the T, n basis, the components of F are

cos(6) sin(6) 0 ] _ —mg sin(0) 1 _ [ —mgj—g ]
~sin(0) cos(8) | | —mg '

—mg cos(6)

dz
—mg e
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Equating the tangential components gives us

@__MCL@/
az - s
dt

d?s dv ds @

dv dy
ds’ =~ s
vdv = —gdy,

’U2

5 = 9 —=%) =9y — ).
d% =v=%+29(y0 — ).

To proceed, we must know y(s), which depends on the curve. Therefore,

ds
29(yo — y(s))’

ds
*/<<>>

If the ma,, ever becomes greater than the normal component of F, the particle

dt =+

will fly off the curve. This will happen when

S de  dedt o,
v gds_ gdtds_ gv’
y//Ui:_g,
y _dz dx@idx

Tt dsdt ds

Therefore,

= () = i
ds (ds/dx) " 2
2 — =1 .
_ y”v2 _ y//2g(y0 . y) = 2y (y yO) + (y )
1+ (y)? 1+ (y)?

Example 3.6. A particle is placed at the point (1,1) on the curve y = ® and
released. It slides down the curve under the influence of gravity. Determine

whether or not it will ever fly off the curve, and if so, where. *
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Solution. First note that

Therefore,

2
2" (y—wo)=1-(¥)",

122 (2® — 1) =1+ 92,
122* — 122 = 1 4 92*,
3zt — 120 —1=0. O

Solving for the relevant value of = gives us « ~ —0.083, which corresponds to y ~
—0.00057. Therefore, the particle will fly off the curve at (—0.083,—0.00057).
Figure 3.8 shows the graph.

2t (6%
(~0.083,-0.00057)
L L e L L X
-2 - 1 2
_2 [
4+

Figure 3.8: A particle released from (1, 1), under the influence of gravity, will
fly off the curve at approximately (—0.083,—0.00057).



Chapter 4

Linear Differential

Equations

Although we have dealt with a lot of manageable cases, first order equations
are difficult in general. But second order equations are much worse. The most
manageable case is linear equations. We begin with the general theory of linear
differential equations. Specific techniques for solving these equations will be

given later.

Definition (nth order linear differential equation)

An nth order linear differential equation is an equation of the form™*
dn
A )

dx™

dn—ly
dx’“l

dn—2y
dzn72

+ Py(x) + -+ P(x)y = Qx).

An nth order linear equation can be written as a linear system (see Chapter
9) as follows. Let

B B dy B d2y B dn—ly
yi(z) =y(z), ya(z)= dr’ ys(z) = qp2 Yn(z) = dzn—1°
Then
dy _ 0 dy2 _ dyn-1 _
dr Y2, dx Y3, L} dx Yn

*If the coefficient of d™y/dz™ is not 1, we can divide the equation through this coefficient
to write it in normal form. A linear equation is in normal form when the coefficient of (") is
1.

45



46 CHAPTER 4. LINEAR DIFFERENTIAL EQUATIONS

and we have

dyn _ d"y _ d"ly
T den P1($)W Pp(r)y + Q(x)
= _Pl(‘T)yn - Pn(x>y1 + Q(x)
Therefore,
dY
- A(2)Y + B(z),
where
[0 1 0 ]
0 0 1 0
Az) = s
0 0 0 1
| —Pu(@) —Paoa(z) —Phoa(2) —P(z) |
and _ -
0
0
B(z) = :
0
| Q(z) |
Theorem 4.1
If Pi(x),...,P,(z),Q(z) are continuous throughout some interval I and x
is an interior point of I, then for any numbers Wy, ..., W, _1, there exists

a unique solution® throughout I of

dny dnfly
P + Pl(ff)m + o+ Pu(z)y = Q(z)
satisfying
y(wo) = wo, 1//(500) = Wi, ...y y(nfl)(ffo) = Wnp-1-

Proof. The proof is given in Chapter 10. O
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4.1 Homogeneous Linear Equations

To begin, consider the case where Q(x) = 0 called the homogeneous case, where

y" 4+ Pi(2)y™ D + Py(x)y" ) 4 -+ Poa)y = 0. (4.1)

Proposition 4.2
1. If r(z) is a solution of Equation (4.1), then so is ar(z) for all r € R.

2. If r(z) and s(x) are solutions of Equation (4.1), then so is r(z) + s(z).

Proof.
1. Substituting y = ar into the LHS gives
ar™ + Py (z)ar™™V 4+ ... 4 Py(z)ar = a (r(") +ee Pn(l‘)T) .
But since r is a solution, we have
a (T(") + e —i—Pn(x)r) =a-0.
Therefore, ar is a solution.

2. Substituting y = r + s in the LHS gives

(n) (n)
4 s
m4...4p
+Py(z) (r(nfl) _|_..._|_5(”*1)) 4 (" toot Pu(a)r
+S(n) + e + PH(I)S
+Pn(x) (r+s)
=04+0=0.
Therefore, r + s is a solution. O

Corollary 4.3

The set of solutions to Equation (4.1) forms a vector space.
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Proof. Let V be the set of solutions to Equation (4.1) and let y1,y2,...,y, € V.
Further, let g € R. Set

y(z) ) Yn ()

vi@) @) -y
Wy, y2s - yn) () = : : . : ,

@) g @) e e ()

the Wronskian of y1, 42, ...,¥,. Then

two equal rows two equal rows
y1() Yn(T)
+..
7 () ()
y1(z) Yn ()
T ey e |7 T
h (33) o Yn (x) Yq (I) o Un (x)
gy o () ) (@)
y1(w) Yn(T)
" (@) - ' (@)
n n—k n n—=k
— Y Po(@)yt T = Py
yi(zr) o yu(2)
-S| Aw)| S = —Pi(2)W.
-t @) ()
) o ()

Therefore, W = Ae~ / P1(#)dz This is Abel’s formula. There are two cases:

A=0=— W(z) =0,
A4£0= W(x)#£x

for all x. O
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Theorem 4.4

Let V be the set of solutions to Equation (4.1) and suppose that
Y1,Y2,---,Yn € V. Then y1,yo,...,y, are linearly independent if and only
it W #0.

Proof. Let V be the set of solutions to Equation (4.1) and suppose that y1,y2,...,yn €
V. Suppose that yi1,¥2,...,y, are linearly dependent. Then there exists con-

stants ¢y, ca, ..., ¢, such that

c1y1(z) + cay2(z) + -+ + cayn(z) =
ey () + cays () + -+ + cnyp(x) =

(n—1)

eyt V(@) + eayd" V(@) - H ey (@) = 0.

Since there exists a nonzero solution for (cy, ca, ..., ¢,) of the equation, we have
C1
C2
M =0,
Cn

so it follows that |[M|=0=W.
Now suppose that W = 0. Select an zy € R. Since W(z) = 0, we have

W (zo) = 0. Thus, there exists constants ¢, ca, ..., ¢, not all zero such that
cl
C2
M )
Cn
where
yi(zo) -+ ynlwo)
M= . ) ’

g @o) -y (o)
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that is,

c1y1 (o) + coya (o) + - -+ + cnyn(xo) =0,
a1y (zo) + cays(wo) + - - + cnyy (x0) = 0,

eyt (wo) + e2yS" V(o) + - -+ eay PV (o) = 0.

Let y(z) = c1y1(x) + caya(x) + - - - + cpyn(x). Since y1,ys, ..., Yy, are solutions
to Equation (4.1), so is f, and f satisfies

flwo) =0, fl(m) =0, f'(x0)=0, ..., f" V(xg)=0.

But y = 0 also satisfies these conditions, and by the uniqueness part of Theorem
4.1, it is the only function satisfying them. Therefore, f = 0, that is,

c1y1(wo) + coy2(wo) + - - - + cryn(x0) = 0.

Therefore, y1,y2, ...,y are linearly dependent. O

Corollary 4.5
Let V be the set of solutions to Equation (4.1). Then we have dim(V) = n.

Proof. Let V be the set of solutions to Equation (4.1). Pick a point 2y € R.
Then by Theorem 4.1, given any numbers wy, ws, . .., Wy, there exists a unique
solution of Equation (4.1) satisfying y=1)(zq) for j = 1,2,...,n. Let y; be
such a solution with (wy,ws,...,w,) = (0,0,...,0), let yo be such a solution
with (wq,wa,...,w,) = (0,1,...,0), etc., finally letting y,, be such a solution
with (w1, ws,...,w,) = (0,0,...,1).

We claim that yi1,¥s,...,y, are linearly independent. Suppose that

c1y1(x) + coy2(z) 4+ -+ 4 cayn(w) = 0.
Then differentiating gives

a1yt (@) + coy (@) + - + ey (2) = 0
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for all j. In particular,

eyt (x0) + ca9s’) (w0) + -+ + cayld (w0) =0
for all j. Therefore, y1,y2, ..., Yy, are linearly independent and dim (V")) > n.

Conversely, let y1, . .., y, be linearly independent. Then W (y1,...,y,) (z) #
0 for all z. Suppose that y € V and let

91(960) 92(960) yn(xo)

Y1 (wo e Yn (o
M = .

") w8 (o) oy (o)

Therefore, |M| = |W(xg)| # 0. So there exists constants (c1,ca,...,c,) such
that

C1 y(o)
C2 Z//(xo)

M . = ’
Cn y(nil)(IO)

that is,

Yy (o) = C1y§j) + C2y§j) tot C1y§j)
for 0 <i<mn-—1. Let f(z) = cry1(x) + caye(x) + - -+ + cryn(x). Then f is
a solution to Equation (4.1) and y¥)(z9) = f@W(z¢) for j = 0,...,n — 1. By
uniqueness, y = f, i.e., y(z) = c1y1(x) + caya(x) + - -+ + cpyn(x). This means
that y is a linear combination of y1,...,y,. So y1,...,y, forms a basis for V.
Therefore, dim(V') = n. O

We conclude that, to solve Equation (4.1), we need to find n linearly in-
dependent solutions yi, ..., y, of Equation (4.1). Then the general solution to
Equation (4.1) is c1y1 4+ caya + -+ - + cnln.

Example 4.6. Solve y” + 5y’ + 6y = 0. *

Solution. It is easy to check that y = 3% and y = ?* each satisfies y”/ + 5y’ +
6y = 0. Therefore, the general solution is c1e3® + cye??, where ¢; and cp are

arbitrary constants. O
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4.1.1 Linear Differential Equations with Constant Coeffi-

cients

The next problem concerns how to find the n linearly independent solutions. For
n > 1, there is no good method in general. There is, however, a technique which
works in the special cases where all the coefficients are constants. Consider the

constant coefficient linear equation

aoy('ll) + aly(n_l) + e+ anily/ + any = 0. (42)

We first look for solutions of the form y = e**. If y = e**

is a solution, then
ao\"eM 4+ g AN 4,0 = 0.

Now since e** # 0, we have

ao\” + a A"+ 4 a, = 0.

Let

p(A) = apA" + o N 4 ay,. (4.3)
If Equation (4.3) has n distinct real roots r1,79, ..., r,, then we have n linearly
independent solutions e™* e™% ... e™* We would like one solution for each

root like this.

Suppose that Equation (4.3) has a repeated real root r. Then we do not
have enough solutions of the form e**. But consider y = ze™. Then

y =re™ +ree’™ = (ro+1)e’,
y'=re™ +r(ra+1)e” = (rPz+2r) e,
y" =r%e" +r(rPe+2r) e = (rPx+3r?) ',

y(") = (r"x + m“"_l) e,
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Substituting y = ze™ in Equation (4.2) gives us

n—1

Z ap (r" Pz + (n— k) r"F) = <Z akr”k> xe™
k=0 k=0
n—1
+ (Z ar (n — k) r"_k_1> e
k=0

= p(r)ze”™ + p'(r)e".

Since r is a repeated root of p, both p(r) = 0 and p’(r) = 0, that is,

(A =r)a\) + (A =r)*d(\)

Therefore, ze™ is also a solution of Equation (4.2).

53

What about complex roots? They come in pairs, i.e., 1 = a + ib and

ry = a — ib, so e@T®)T and e(@=®)* gatisfy Equation (4.2). But we want real

solutions, not complex ones. But

elatib)z _ jax (cos(bx) + isin(bx)),

ela= )T — 0% (cos(bx) — isin(bx)) .
Let

z1 = e (cos(bz) + isin(bz)) ,
2o = e (cos(bx) — isin(bx)) .
If z; and z9 are solutions, then

Z1 + 29
2

21 — 22
2

= e cos(bzx), = e sin(bx)

are solutions. So the two roots a + ib and a — ib give two solutions e®® cos(bx)

and e®* sin(bx). For repeated complex roots, use ze** cos(bx), xe® sin(bx), etc.

So in all cases, we get n solutions.

The expression ¢1e%" cos(bx) + e** ¢ sin(bx) can be rewritten as follows. Let

Az\/c%—l—cg. Then
_ C1
f=cos ' —— |,
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that is,
C1 . C2
cos(f) = ——, sin(f) = /1 — cos2(0) = ———.
(©) 2+ c2 (6) ©) c? + c2
Therefore,

c1e%% cos(bx) 4+ e*“co sin(bx) = Ae™ (% cos(bx) + %2 sin(b:lc))

= Ae® (cos(f) cos(bx) + sin(6) sin(bx))
= Ae™ (cos(bx — 0)) .

Example 4.7. Solve y® — 4y 4 5" 46" — 36y’ 4+ 40y = 0. *

Solution. We have

A5 — ANt 4503 + 602 — 360440 =0,
A=2°(A+2) (A2 =21 +5) =0.

Therefore, A = 2,2, —2,1 4+ 2 and
y = c16®® + coxe®™ + c3e ™2 + cqe” cos(2x) + cssin(2x),

where ¢y, ca, 3, ¢4, c5 are arbitrary constants. O

4.2 Nonhomogeneous Linear Equations
A nonhomogeneous linear equation is an equation of the form

Y™+ p1(2)y™ Y + pa(2)y™ T + -+ pa(z)y = g(2). (4.4)

Let Equation (4.1) (p.47) be the corresponding homogeneous equation. If u
and v are solutions of Equation (4.4), then u — v is a solution of Equation (4.1).
Conversely, if u is a solution of Equation (4.4) and v is a solution of Equation
(4.1), then u + v is a solution of Equation (4.4).

Let y1, 92, ..., Yn be n linearly independent solutions of Equation (4.1) and
let y, be a solution of Equation (4.4). If y is any solution to Equation (4.4),

then y — gy, is a solution to Equation (4.1), so

Y—Yp=C1Y1+ Y2+ -+ Culn.
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Therefore,
y=aytcy+ - +cnYn+Yp

is the general solution to Equation (4.4).

Example 4.8. Solve y’ —y = x. *

Solution. The corresponding homogeneous equation is y” —y = 0. It then
follows that A2 — 1 =0 = A = £1. Therefore,

xT —XT
Yy =€, Y2 =€ .

By inspection, y, = z solves the given equation. Therefore, the general solution

is
y=cre® +ce T —x,
where ¢; and ¢y are arbitrary constants. O

We will consider more systematically how to find ¥, later.
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Chapter 5

Second Order Linear

Equations

A second order linear equation is an equation of the form
y"+ P(z)y + Qx)y = R(x). (5.1)

To find the general solution of Equation (5.1), we need

e Two solutions: y; and yo of the corresponding homogeneous equation
y" + P(x)y’ +Q(z) = 0.

e One solution: y, of Equation (5.1).

Then the general solution is ¥ = c1y1 + cay2 + Yp, Where ¢; and cp are arbitrary
constants.
Except in the case where P(x) and Q(x) are constants (considered earlier

on p.52), there is no general method of finding y;, but
1. given y1, there exists a method of finding ys.
2. given y; and Y9, there exists a method of finding y,.

We will discuss (1) first.

5.1 Reduction of Order

As mentioned earlier, we can find a second solution from the first. We first

develop the tools we need.

57
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Lemma 5.1
Let f(z) be a twice differentiable function on a closed bounded interval
J. If {x € J: f(x) = 0} is infinite, then there exists an xy € J such that

f(zo) = 0 and f'(zo) = 0.

Proof. Let S = {x € J: f(x) =0}. If |S| is infinite, then by the Bolzano-
Weierstrass Theorem, S has an accumulation point xg, i.e., there exists an
xg € S such that every interval about x( contains another point of S. Therefore,
by Rolle’s Theorem, every interval about zy contains a point where [’ is 0.
Therefore, by continuity, f'(x¢) = 0.* O

Corollary 5.2
Let y1(x) be a solution of vy + P(x)y’ + Q(z)y = 0 on a closed bounded
interval J. If y; is not the zero solution, then y; (z) = 0 for at most finitely

many z in J.

Proof. Let V be the set of solutions of y’ + P(x)y’ + Q(z)y = 0 on J. Then
V is a two-dimensional vector space. So if y; # 0, then there exists a y2 € V
such that y; and y, are linearly independent. Therefore, W(yy,y2) # 0, i.e.,
W (y1,y2) is never zero (the Wronskian is either always 0 or never 0). But if
y1(z) = 0 for infinitely many x in J, by Lemma 5.1, there exists an z¢ € J such
that y1(z0) = 0 and yf(x0) = 0. Therefore,

W(y1,y2)(x0) =

This is a contradiction. Therefore, y; (z) = 0 for at most finitely many « in J.O

Let y; a solution to v + P(z)y’ + Q(z)y = 0 on a closed bounded interval
J. We want to find a linearly independent second solution ys.

We break J into a finite collection of subintervals so that y;(z) # 0 on the
interior of each subinterval. We will describe how to find the second solution s

*Note that f’ is necessarily—but certainly not sufficiently—continuous if f’ is differen-
tiable.
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on the interior of each interval. This will define ys throughout J except for a
few isolated points.

Consider a subinterval I on which y;(x) is never zero. So y;(z) > 0 or
y2(z) < 0 throughout I. We have

Yy Y2

W(y1,y2) = , ,
Y1 Y2

If y is also a solution to ¥ + P(x)y’ + Q(z)y = 0, then W = Ae~J P(@)dz for
some constant A (Albel’s formula).* Suppose we choose A = 1. Then
Y1yh — Yiys = e~ D@z,

where y; is known. This is a linear first order equation for y,. In standard form,

we have

, yll _ e~ J P(z)dz

Yo— Yo = ———,
n Y1

where y; # 0 throughout I. The integrating factor is

:‘// 4
of 8 _ (o _ ©

\y1|

)

where C" = £1, depending on the sign of ;. We use 1/y;. Therefore,

yé y/ e—fP(m) dx
O S R
Yyio0n Y1
— [ P(z)dx
v2 _ / T
n Y1
finally giving us
67fP(x) dx
Y2 = yl/ig dx. (5.2a)
Y1

This defines y» on J except at a few isolated points where y; = 0. At those
points, we have

Yh — Yiyp = e S PO,
SO
e—fP(ac) dx
Yo =——""——F"- (52b>
Y1

This defines yo are the boundary points of the subintervals.

*Different A’s correspond to different ya’s.
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Example 5.3. Observe that y = x is a solution of

T+ 2 T +2
y//_iy/_,’_ . y:0
T T
and solve
" l‘—|—2, r+2 z
Yy - —y +—5y=uzec.
T T *

Solution. Using the fact that y; = x, we have
x+2

— [(~=£2)de S(1+2)dx z+21In(|z|)
yz:x/eidz:z/eidx:x/eidz

2 2 2

z ,21n(|z|) z 2
e%e e’ |z
=x | ———dr==zx 2] de =z [ € dx = xe®.
2 2

Therefore,

xr xre

= xe® 4 22e® — ze® = 12",
1 e* +xe®

W:

From this, we have

X x
Yo R retre
V= = — = —e" = v = —€”,
W xr2e
R xxe”
/U/2:7: 5 :1:}1}2:1'_
w xr?e”
Therefore,
P 2
Yp = V1Y1 + V2y2 = —xe” + 17€”,

and the general solution is
y = Chz + Coze® — ze® + 2%e® = Cha + Chxe® + z2e”, x #0,

where C, Ca, and CY} are arbitrary constants. O

5.2 Undetermined Coefficients

Suppose that y; and ys are solutions of y” + P(x)y’ + Q(z)y = 0. The general
method for finding y, is called variation of parameters. We will first consider
another method, the method of undetermined coefficients, which does not always

work, but it is simpler than variation of parameters in cases where it does work.
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The method of undetermined coefficients has two requirements, that

1. we have constant coefficients, i.e., P(x) = p and Q(z) = ¢ for some con-
stants p and q.
2. R(x) is “nice”.
2z

Example 5.4. Solve y’ —y = e**. *

Solution. We have A2 —1 = 0. So y; = e and yo = e~ *. Since R(x) = €%*, we
look for a solution of the form y = Ae?*. Then

yl=2A62$, y”=4A62$.
Then according to the differential equation, we have

1

4Ae%® — Ae®* =¥ — A = 3"

—_———
3Ae2®

Therefore, the general solution is

1
y=cre’ +ce T+ ge%,

where ¢; and ¢y are arbitrary constants. O

Undetermined coefficients works when P(z) and Q(z) are constants and

R(z) is a sum of the terms of the forms shown in Table 5.1.

Table 5.1: The various forms of y, ought to be given a particular R(x).

R(x) Form of y,
Ca™ Agz™ + A" L+ + A,z + A,
CeTZE AeTZL‘

Ce™ cos(kx) e o

Cer® sin(kz) Ae"™ cos(kx) + Be™ sin(kx)

The success of undetermined coefficients depends on the derivative of R(x)
having some basic form as R(x). There is an easy way to deal with a complica-
tion: whenever a term in the trial y, is already part of the general solution to the
homogeneous equation, multiply it by . For example, if we have 3" — y = e,

as before, we have y; = e* and yo = €2*. Thus, we try y, = Aze*” and find A.
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Example 5.5. Solve ¢y + 3y’ + 2y = e* — 3. *

Solution. We have A2 + 3\ + 2 = 0. Factoring gives (A +2) (A +1) = 0, so
A€ {—1,-2}, and we have y; = ¢~ % and y, = e 2%. Let y = Ae® + B. Then
y' = Ae® and y’ = Ae®, giving us

Y + 3y + 2y = Ae” + 3Ae” 4+ 2Ae” + 2B = 6Ae” + 2B.
Comparing coefficients with e* — 3, we have

6A:1:>A:é,

2B:—3:>B:—g

Therefore, y, = ¢”/6 — 3/2, and we have

_ _ e 3

y:clew—i-ch 2w+€_§’
where ¢; and ¢y are arbitrary constants. O
Example 5.6. Solve y’ + y = sin(x). *

Solution. We have A2 +1 = 0, so A = +i, and it follows that y; = cos(x) and
y2 = sin(z). Let y = Azsin(z) + Bz cos(x). Then

y' = Asin(z) + Az cos(z) + B cos(z) — Brsin(z)
= (A — Bz)sin(z) + (Az + B) cos(x),

y" = —Bsin(x) + (A — Bz) cos(z) + Acos(z) — (Az + B) sin(z)
= (—Az — 2B)sin(z) + (24 — Bx) cos(z).

Therefore,
y" +y = (—Az — 2B)sin(x) + (24 — Bx) cos(z) + Az sin(x) + Bx cos(z).
Comparing coefficients with sin(z), we see that

1
—2B=1=B=—,

2A=0=—= A =0.
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Therefore, y, = —x cos(x)/2, and the general solution is

x cos(x)
2 )

y = ¢y sin(x) + o cos(x)

where ¢; and ¢ are arbitrary constants.

Example 5.7. Solve y” — 4y = 22.

63

¢

*

Solution. We have \2 —4 = 0, so A = £2, and it follows that y; = e?* and
yo = e 2%, Let y = Az? + Bz +C. Then y = 2Ax+ B and y”’ = 2A. Therefore,

y' —dy = 2A — 4Ax* — 4B — AC = —4Azx* + 0x + (24 — 4B — 40).
Comparing coefficients with 22, we immediately see that

—4A:1:>A:—%,
—4B=0= B =0,
A 141

24 —4C = S _=
C=0=C 5 5 3

Therefore, y, = —2%/4 — 1/8, and the general solution is

2
2x —2x z 1

=c1e”" + coe -— ==,
Y 1 2 1 3

where ¢y and ¢y are arbitrary constants.

Example 5.8. Solve y’ —y' = x.

O

*

Solution. We have \2 — X = 0, so A € {1,0}, and it follows that y; = e* and

yo = 1. Let y = Az? + Bx. Then y/ = 2Ax + B and y” = 2A. Therefore,
y' —y=2A—-2Ax — B.
Comparing coefficients with =, we immediately see that

1
24=1= A=,

2A-B=0= B=-1.

Therefore, y, = —x2/2 — 2, and the general solution is

2

y201€x+02—?—3}',
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where ¢; and ¢y are arbitrary constants. O

5.2.1 Shortcuts for Undetermined Coefficients

Suppose we have
y" +ay +by = R(x).
Let p(\) = A? + a) + b. We now consider two cases for R(z).

CaseE It R(x) = ce®. It follows that y, = Ae®*, so y = ade* and
y” = aAe®®. Then

y//_’_ay/_"_byzceaw
(0® + acv + b) Ae®” = p(a) Ae™.

Therefore, A = ¢/p(a), unless p(a) = c.

What if p(a) = 07 Then e®* is a solution to the homogeneous equation. Let
y = Aze®®. Then

y = Ae®® + Aaxe™®,

Y = Aae™® 4+ Aae™® + Aa’ze®® = 2A0e®™” + Aalze™®.
Thus,

y'+y +y=A[(c’z 4+ aaz 4+ b) + 2a + a] e**
= A(p(e)ae™ +p'(a)e™)
— Ap'(a)e"®.

Therefore, A = ¢/p’(«), unless p’(a) = 0 too.

If p(a) = 0 and p'(a) = 0, then e*® and xe®® both solve the homogeneous

equation. Letting y = Az%e**, we have A = ¢/p” ().

CASE II: R(z) = ce™ cos(bx) or ce™™ sin(bx). We use complex numbers. Set
o =r +tb. Then

ce®® = ce" cos(bx) + ice” sin(bzx).

Let z = y + tw. Consider the equation

2" +az + bz = ce®”. (5.3)
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The real part and imaginary parts are

y" + ay’ + by = ce’” cos(bx), (5.4a)
w” + aw’ + bw = ce" sin(bz), (5.4b)

respectively. The solutions of Equation (5.3,5.4a,5.4b) are then

i () me(E)

respectively.

Example 5.9. Solve y” + 8y + 12y = 3 cos(2x). *

Solution. We have p(\) = A2 + 8\ + 12 = (A +2)(A+6). Therefore, A €
{2, -6} and it follows that y; = 2% and yo = e~ 5%. So

L 362ia: B 3e2iw B 3€2ia:
p(20) (202 +16i+12 —4+16i+ 12
_ 3e2i _§ 1 621-1_; 1——27;627;m
C8+16i 8 1+2 8 (1-—2i)(1+2i)
3 1-2i o 3 o
= — . W (1 =2 1T
8 1+2i° 01— 2)e
3
=10 (1 = 24) (cos(2z) + isin(2x))
3

=10 [cos(2x) + 2sin(2z) + i (—2 cos(2x) + sin(2x))] .

Therefore,

Re(z) = % (cos(2z) 4 2sin(2x)), Im(z) = % (—2cos(z) + sin(2z)) .
Hence, the solution is

y=cie 2 +cpe O % (cos(2z) + 2sin(2x)),
where ¢y and ¢, are arbitrary constants. O

We conclude that there is no shortcut when R(z) is a polynomial or any

multiple of a polynomial.
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5.3 Variation of Parameters

Consider the equation

y' + P(z)y' + Q(z)y = R(x), ey

where P(x) and Q(z) are not necessarily constant. Let y; and ys be linearly

independent solutions of the auxiliary equation
y" + P(x)y’ + Q(z)y = 0. (H)

So for any constants Cy and Cy, Cyy; + Cays satisfies Equation (H).

The idea of variation of parameters is to look for functions v (z) and ve(x)
such that v1y1 + veys satisfies Equation (I). Let y; and yo. If we want y to
be a solution to Equation (I), then substitution into Equation (I) will give one

condition on vy and ws.

Since there is only one condition to be satisfied and two functions to be
found, there is lots of choice, i.e., there are many pairs v; and ve which will
do. So we will arbitrarily decide only to look for v; and ve which also satisfy
vy + vhys = 0. We will see that this satisfaction condition simplifies things.
So consider

Yy = v1Y1 + v2ye,
Y = v1y1 + vays + ViYL + vay2 = viyy + v2ys,
y" = viy] + vays + V1Y) + vhYs.

To solve Equation (I) means that
vy + vayy + iy + vays + Pz
+P(z)vays + Q(x)v1y1 + Q()v2y2

v (¥ + P(2)yy + Q(x)y1)
+uvs (5 + P(z)yy + Q(x)y2) | = R(z).
+viy) + vhys

Therefore,

viyy + vy, = R(x),
V1Y) + vyyh =0,
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and it follows that

/ ya R o R
N T
where
Yy Y2
W = , | #£0,
Y1 Y2

i.e., it is never zero regardless of x, since y; and y, are linearly independent.

Example 5.10. Solve y" — 5y’ + 6y = z2e3%.

Solution. The auxiliary equation is

Yy =5y +6y =0~ A —5A+6=0= \=32.

3z

Therefore, the solutions are y; = €3* and y» = €2*. Now,

3z 2z
1 2 € €
W = y/ y/ = 3 e | = 2e57 — 37" = —e’7,
viovh | | 3% 2
Therefore,

;L yQR B e?mx2€3r I B 1’3
M= = = — V1 = —.
w —ed 3

We can use any function v; with the right v1, so choose the constant of integra-
tion to be 0.

For vs, we have

Iileiie&TxZeSwiiZm
v277W7 e re”,
SO
_ 2 x _ 2 x T
vg——/xe dr = —x°e +2/x6 dx
—_— —_—
by parts by parts
= —2%e” 4 2ze® — 2 / e® dr
= 226" + 2ze” — 2e"
=— (x2 —21‘—|—2)6x.
Finally,

Yp = =€ — (2° — 20+ 2) e"e* = ¥ (—;102—1—230—2)7
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and the general solution is
23
y = C1e3 + Cae®® + e** (3 — 2?42z — 2)
3
=3 (3 —x2—|—2x—2+C’1> + Che?®

3
= (x — 2?42+ C’1> 3T 4 Cye?®,

3
where C7 and Cy are arbitrary constants. O
Example 5.11. Solve y” 4 3y’ + 2y = sin(e®). *

Solution. We immediately have A\? + 3\ + 2 = 0, which gives A\ € {—1,—-2}.

Therefore, y; = e~® and ¥ = e~ 2%. Now,

e T e—2:v .
W = 0r | = —2e73 f o7 = 7T,
—e " =27
Therefore,
—2T o T
e sin(e”)
r_ T z _
L P sin(e”) = v; = — cos(e”) .
For vy, we have
e~ ¥ sin(e” ..
vh = (") _ —e*"sin(e”) .

Therefore,

vy = 7/621 sin(e®) dx = f/tsin(t) dt
substitute t = e” by parts

=— (—tcos(t) + / cos(t) dt)

= — (—tcos(t) +sin(t))

= e cos(e”) —sin(e”) .
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Finally,

Yp = V1Y1 + V2Y2
= —e " cos(e”) + e 2 (e cos(e”) — sin(e”))
= —e " cos(e”) + e " cos(e”) — e~ 2% sin(e?)

= —e 2% sin(e?),
and the general solution is
y=Cre " 4 Coe " — e~ ** sin(e”),

where C7 and Cy are arbitrary constants. O
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Chapter 6

Applications of Second
Order Differential

Equations

We now look specifically at two applications of first order DE’s. We will see that

they turn out to be analogs to each other.

6.1 Motion of Object Hanging from a Spring

Figure 6.1 shows an object hanging from a spring with displacement d.

Figure 6.1: An object hanging from a spring with displacement d.

The force acting is gravity, spring force, air resistance, and any other external

71
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forces. Hooke’s Law states that
Fspring = kd) (61)

where F is the spring force, d is the displacement from the spring to the natural
length, and k£ > 0 is the spring constant. As we lower the object, the spring
force increases. There is an equilibrium position at which the spring and grav-
ity cancel. Let x be the distance of the object from this equilibrium position
measured positively downwards. Let s be the displacement of the spring from
the natural length at equilibrium. Then it follows that ks = mg.

If the object is located at x, then the forces are
1. gravity.

2. spring.

3. air resistance.

4. external.

Considering just gravity and the spring force, we have*
Fgravity + Fspring =mg — k (33 + 3) = —kzx.
Suppose air resistance is proportional to velocity. Then
F. = —rv, r > 0.

In other words, the resistance opposes motion, so the force has the opposite sign
of velocity. We will suppose that any external forces present depend only on

time but not on position, i.e., Fexternal = F(t). Then we have

Fiotal = —kz —rv + F(t),
——
so it follows that P2 p
T XL
—_— — + kx = F(¢t). 2
mdt2—|—rdt—|— x (t) (6.2)

Therefore, mA% + rA + k = 0 and we have

)\:fr:t\/m: T:I: (7‘)2 k

2m 2m

2m/)  m

*Intuitively, when z = 0, they balance. Changing « creates a force in the opposite direction
attempting to move the object towards the equilibrium position.
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We now have three cases we need to consider.

CASE 1: 4mk > r2. Let a = r/2m, let w = \/k/m, and let

i) -

Then A = —a +i6 and
x=e " (Cycos(Bt) + Cysin(Bt)) = Ae™* cos(Bt — 0), (6.3)

where C7 and Cy are arbitrary constants. Figure 6.2a shows how this solution
qualitatively looks like.

Damped vibrations is the common case. The oscillations die out in time,
where the period is 27/8. If » = 0, then @ = 0. In such a case, there is no

resistance, and it oscillates forever.

CASE 2: 4mk = r2. In such a case, we simply have
r=e Fmt (Cl + Cgt) R (64)

where C7 and Cy are arbitrary constants. Figure 6.2b shows how this solution
qualitatively looks like.

CASE 3: 4mk < r%. Let a = r/2m and

T k
-G &
2m m
Then the solution is
z = Chre @0t L Che—(atd)t, (6.5)

where C7 and Cy are arbitrary constants. This is the overdamped case. The
resistance is so great that the object does not oscillate (imagine everything
immersed in molasses). It will just gradually return to the equilibrium position.
Figure 6.2c shows how this solution qualitatively looks like.

Consider Equation (6.2) again. We now consider special cases of F(t), where

Fy cos(wt),
F(t) =
© Fy sin(wt).
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A/\/\/\ t

(a) 4mk > r? (b) 4mk = r?

(c) 4mk < r?

Figure 6.2: The various cases for a spring-mass system.

Use undetermined coefficients to get the solution of the form
z, = B cos(wt) + C'sin(wt).

For F(t) = Fycos(wt), we get

T, = o mwf)b2 Too? [(k — mw) cos(wt) + rwsin(wt)] = Acos(wt — 9),
where
A= o
\/(k —mw?)? + (rw)?
cos(0) = b me” 5
(k —mw?)? + (rw)?
sin(8) = e

(k- mwz)2 + (rw)Q.

For F(t) = Fysin(wt), we get x, = Asin(wt — J), where A and ¢ is as above.
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In any solution
e~ (%) + Asin(wt — §),

the first term eventually dies out, leaving Asin(wt — ) as the steady state so-
lution.

Here we consider a phenomenon known as resonance. The above assumes
that cos(wt) and sin(wt) are not part of the solution to the homogeneous equa-

tion. Consider now )
d°x

m—s + kx = Fy cos(wt),

where w = /k/m (the external force frequency coincides with the natural

frequency). Then the solution is*

F
Tp = —2_tsin(wt).

2vVkm

Another phenomenon we now consider is beats. Consider 7 = 0 with w near
but not equal to \/k/m. Let @ = y/k/m. Then the solution, with x(0) =0 =
2/(0), is

Fo

r=————cos(wt —wt
m (0% — w?) ( )

o) ()

0 . .
~ — sin(et) sin(wt),
5o, Sn(et) sin(wt)

where ¢ = (w — @) /2.

6.2 Electrical Circuits

Consider the electrical circuit shown in Figure 6.3.

Let Q(t) be the charge in the capacitor at time ¢ (Coulombs). Then dT'/dt
is called the current, denoted I. The battery produces a voltage (potential
difference) resulting in current I when the switch is closed. The resistance R
results in a voltage drop of RI. The coil of wire (inductor) produces a magnetic
field resisting change in the current. The voltage drop created is L (dI/dt). The

*The amplitude of the vibrations is
Fy .
2vVEm

which increases with time.
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resistor

battery —— I amperes

L SE

inductor

switch | .
capacitor

Figure 6.3: An electrical circuit, where resistance is measured in Ohms, capac-
itance is measured in Farads, and the inductance is measured in Henrys.

capacitor produces a voltage drop of @Q/C. Uunless R is too large, the capacitor

will create sine and cosine solutions and, thus, an alternating flow of current.

Kirkhoff’s Law states that the sum of the voltage changes around a circuit is

Z€ro, SO
dl Q@
FE#t)+RI+L— +=
(t) + + 7 + ok
so we have
d?Q aQ  Q

L—> +R— + =% = E(¢).

dt? da  C

(6.6)

The solution is the same as in the case of a spring. The analogs are shown in

Table 6.1.

Table 6.1: Analogous terms between a spring-mass system and an electrical

circuit.
Circuit Spring
Charge @ Displacement =
Inductance I Mass m
Resistance R Friction r
Capacitance inverse 1/C Spring constant k
Voltage generated by battery FE(t) | External force F(t)
Amperes Velocity v

An example of this application is choosing a station on an old-fashioned

radio. The radio has a capacitor with two charged metal bars.

When the

user turns the tuning dial, it changes the distance between the bars, which in
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turn changes the capacitance C. This changes the frequency of the solution
of the homogeneous equation. When it agrees with the frequency E(t) of some
incoming signal, resonance results so that the amplitude of the current produced

from this signal is much greater than any other.
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Chapter 7

Higher Order Linear

Differential Equations

In this section we generalize some of the techniques for solving second order
linear equations discussed in Chapter 5 so that they apply to linear equations
of higher order. Recall from Chapter 4 that an nth order linear differential

equation has the form
y™ 4 Py ()" 4 Py(2)y " 4 - 4 Py (2)y = Q(x). (7.1)
The general solution is
y=Ciy1 + Coya + - + Cryn + Yp,

where y1, %2, ...,y are linearly independent solutions to the auxiliary homoge-
neous equation and y, is a solution of Equation (7.1).

So given y1,¥2, ..., Yn, how do we find y,? We again consider the two meth-
ods we have looked at in §5.2 and §5.3 (p. 60 and p. 66, respectively).

7.1 Undetermined Coefficients

If Pi(x), Po(x),. .., Py(x) are constants and R(x) is “nice”, we can use undeter-

mined coefficients.

Example 7.1. Solve y®*) —y = 2¢2¢ 4 3¢?. *

79
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Solution. We have
pA) =M —1=A-1)A+1)(\+1).

Therefore,

Y1 = e”, Yo =e ", y3 = cos(z), Y4 = sin(z).

Let y, = Ae®® + Bxe®”. Then by the short cut method (§5.2.1, p.64), we have

2 2 2
A = —_— — = —
p(2) 16—1 15
3 3 3
B = = = —.
p() 413 1

Therefore, the general solution is

2 3
y = Cre” 4+ Cae™* + C3 cos(z) + Cysin(z) + 1—562“’ + er””. 0

7.2 Variation of Parameters

Suppose that y1, Y2, . . . , Y, are solutions of the auxiliary homogeneous equation.
We look for solutions of Equation (7.1) of the form

Y =uv1y1 +v2y2 + -+ UnYn,

where vy, vg, ..., v, are functions of . One condition on vy, vs,...,v, is given
by substituting into Equation (7.1). We choose n — 1 conditions to be

ViYL 4 vpy2 + -+ Uy =0, (1)

VY +viys + - vy, =0, (2)

Uy oy ey = o, (n—1)
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If conditions (1),...,(n — 1) are satisfied, then
n
(vivs) Z viy; + Zv =Y vy,
i=1
n
(viy;)’ Z vy} + Z vy =Y vy,
i=1 i=1

Qs\
I
M:

i=1

'@\
[
Mﬁ

.
I
—

) Zvyf" 1)+Zvyn 2)*2”4/(” n,
thyl +Z'U/ (n 2

Therefore,

y™ 4+ Py (z)y" ) 4+ 4 Pya)y = Zviy + Zv/ (n—1)

Therefore, Equation (7.1) becomes the first condition

Zv' =Dy = R(x). (n)
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Conditions (1),...,(n — 1) can be written as
v} 0
" vh B 0
vl R(z)
where
W e Yn
A
n—1 n—1
WL

Therefore, |[M| =W # 0.

7.3 Substitutions: Euler’s Equation

Consider the equation
2"y + a2y 4 a1y 4 any = R(x), (7.2)

where a1, as, . .., a, are constants. Consider z > 0. Let z = e so that u = In(x)

(for < 0, we must use u = In(—x)). Then

dy _dydu iyt
de  dudx duz’
Py Pyl ody 1 (dzy dy)

dz?  du? 22 duz?

d3y 5 5 dy\ 1 d’y  dy\ 1
ZJ |- _ 2y oL _ ) =
dx? (d yd du2) a3 (du2 du) x3

dy  (d"y dr 1y dy\ 1
dam < OGOy )
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for some constants Cq,Co, ..., Cy. Therefore, Equation (7.2) becomes
dny dnfly dy
dun + b1 dun—l +et b"_1% + b"y = R(eu)
for some constants by, bs, ..., by.
Example 7.2. Solve 2%y + 2y’ —y = x3 for x > 0. *

Solution. Let x = e* so that u = In(z). Then

dy _dydu_dy1
dr  dudr duz’
Py Py 1 dy 1 <d2y dy) 1

dz?  du?z? dux?

du? du

x2’

Therefore,

Considering the homogeneous case, we have A2 — 1 = 0 = A = 1. Therefore,
y1 = e* and y2 = e~“. Using undetermined coefficients, let y, = Ae®*. Then
y' = 3A4e3" and y” = 9Ae3". Substitution gives

9Ae3 — APt = 3.
| ——
8Ae3u

We can immediately see that A = 1/8. Therefore, the general solution is
u —u 1 3u
y=Cre" + Coe ™™ + ge

_ Cleln(x) + Cqe™ In(zx) + 163 In(x)
8

C. x3
201$+72+7,
T 8

where C7 and Cy are arbitrary constants. O

We can also consider a direct method. Solving

Py | dy
-7 -7 -0
dz? +pdu tay
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involves looking for solutions of the form y = e** = (e“))‘ and finding A. Since
x = e, we could directly look for solutions of the form z* and find the right \.

With this in mind and considering Example 7.2 again, we have

A
y=a,

y/ _ )\fo17

y' =A(\—1)2*"2
Therefore,

22y fay —y=0=AA-1az+xz* —2* =0
— AA—1)+A—1=0
=\ -1=0

= A\ = %1,

as before.



Chapter 8

Power Series Solutions to
Linear Differential

Equations

8.1 Introduction
Consider the equation
y™ + P (2)y™ V) + - 4 P,(2)y = R(x). (8.1)
Given solutions y1, ..., y, to the homogeneous equation
y" + Pi(z)y + -+ Pay = 0,

we know how to solve Equation (8.1), but so far there is no method of finding

Y1,..-,Yn unless Pp,..., P, are constants. In general, there is no method of
finding 1, ...,y exactly, but we can find the power series approximation.
Example 8.1. Solve y’ — xy’ — 2y = 0. *

Solution. Let

oo
y=ao+a1w+azw2+~-~+an$"+“':Zanmn'

n=0

85
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Then it follows that

Yy =ay+2a0x + - +naz" + (n4+ 1) apa” -
oo oo
= Z nan,z" "t = Z (k+1) apsr 2",
n=1 k=0

where k = n — 1. Relabeling, we have

oo
Z (n+1)apt12™.
n=0

By the same procedure, we have

o0

Z (n+1)api12™” Z (n+1)(n+2)aps2x”.

Now considering 3" — zy’ — 2y = 0, we have

" ’

y y y
o0 oo oo
Z (n+1)(n+2)api22™ —x Z na,z" ' —2 Z apx” =0,
n=0 n=0 n=0
Z [(m+1)(n+2)ante — nay, — 2a,] 2™ = 0.
n=0

This gives us the recurrence relation

(n+1) (n+2)ant2 — na, — 2a, =0,
n+1)(n+2)apnt2 — (n+2)a, =0,

(n+1)apta = an,

Qnp
a. =
n+2 n+ 1
for all n > 0. Therefore,
ago az agp Gy ag Qg
ay = — A4y = — = —— ag = — = a = =m0
2 ) 4 137 6 5 1357 ) 2n HZ:1(2]€_1)7
aq as a1 as a1 ai
ag = —, a5 = — =

2 1240 7% T 246 7 T ok
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Therefore,
y=ap+ a1z + azr® + a3z’ + -+ aza + -
a1 s ao 2n ax 2n+1
:a0+a1x+a0x2+—x + -+ =5 7+ =5 T + -
2 Hk:l (2k - 1) Hk:l 2k
( ) 22" 23 22t
=ap (142 +~-~+n+~-->+a1(m++~-~+n+~-~>
[Tk 1(%— 1) 2 T, 2k

0 2n+1

*aoznk ( 214:—1)“”7Z onnl

That is, we have y = Cyy; + Coys, where C7 = ag and C5 = a7 such that

St 1,2n+1
Y2 = onoy "
nZ:OHkl%—l) 2

Can we recognize y; and ys as elementary functions? In general, no. But in

this case, we have

> p2ntl > p2n o0 (I2)” oo (1,2/2)” )
y2:z 2nn :mZZ"n! :xz ALY sz n! = ze” /2.
n=0 n=0 n=0 n=0

Having one solution in closed form, we can try to find another (see §5.1, p.57)
by

— [ P(z)dz — [ P(z)dx
ylzyz/eizzxeﬁm/eidx

2
Y2 z?e”

2
z“/2
2 e 2 1
= ze® /2 5z do = ze” /2 — 75 A,
x2e x2ex?/

which is not an elementary function. O
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8.2 Background Knowledge Concerning Power

Series

Theorem 8.2
Consider the power series Y - a, (z —p)".

1. There exists an R such that 0 < R < oo called the radius of con-
vergence such that Y ° ja, (z —p)" converges for |z —p| < R and
diverges for |z — p| > R. The radius of convergence is given by

Gnp

R = lim

n—oo

(8.2)

Ap+1
if the limit exists (ratio test).

2. The function f(z) = Y ", an,z"™ defined for |z — p| < R can be differ-
entiated and integrated term-wise within its radius of convergence.

Proof. Proof is given in MATA37 or MATB43. O
Remark. The series may or may not converge when |z — p| = R. O

Using (2) of Theorem 8.2, f'(z) exists for |z — p| < Rwith f/(z) = Y 07 na,z""*.
Similarly,

f) =) an(z=p)", z=p=>a=f(p)
n=0

fl2)=> nan(z—p)"",  z=p=a1=f(p),
n=0

1(2) :nz:%n(n—l)an (z—p)" 2, 2=p=ay = f"2(p)’

s (n)
f(")(z):Zn!an, z:p:>an:f (p)
n=0
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Conversely, if f is infinitely differentiable at p, we define a,, = f)(p)/n!. Then
Sl gan (z—p)" is called the Taylor series of f about p.
From the above, if any power series converges to f near p, it must be its

Taylor series. But
1. the Taylor series might not converge.

2. if it does converge, it does not have to converge to f.

Definition (Analytic function, ordinary/singular point)

A function f is called analytic at p if Y > a, (2 —p)" converges to f(z) in
some neighbourhood of p (i.e., if there exists an 7 > 0 such that it converges for
|z —p| < r). If fis analytic at p, then p is called an ordinary point of f. If f

is not analytic at p, then p is called a singular point of f.

Theorem 8.3 (Theorem from complex analysis)
Let f(z) be analytic at p. Then the radius of convergence of the Taylor
series of f at p equals the distance from p to the closest singularity of f in

the complex plane.

Proof. Proof is given in MATC34. O

Example 8.4. Consider f(z) = 1/ (2% 4+ 1). The singularities are +i. There-
fore, the radius of convergence of the Taylor series about the origin is 1, with

the series given by

(oo}
fl@) =" (1"
n=0
The radius of convergence of the Taylor series about = = 1 is v/2. *

8.3 Analytic Equations

Consider y"” + P(z)y’ + Q(x)y = 0. If both P(z) and Q(z) are analytic at p,
then p is called an ordinary point of the DE. Otherwise, p is called a singular
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point or a singularity of the DE. When looking at a DE, do not forget to write

it in the standard form. For example,
22y +5y + 2y =0

has a singularity at = 0, since the standard form is

) 1
@) (e
x T

Theorem 8.5

Let « = p be an ordinary point of y” + P(z)y’ + Q(x)y = 0. Let R be the
distance from p to the closest singular point of the DE in the complex plane.
Then the DE has two series y1(z) = > o~ apz™ and yo(z) = > .7 bpa”
which converge to linearly independent solutions to the DE on the interval
|z —p| < R.

Remark. The content of the theorem is that the solutions are analytic within
the specified interval. The fact that solutions exist on domains containing at

least this interval is a consequence of theorems in Chapter 10. O
Proof. The proof is given in Chapter 10. 0

Example 8.6. Consider (22 + 1) y” + 22y’ + 2y = 0. Dividing by 2® + 1, we

have
3z 2

/ _
Zri? T ey
The singularities are £i. If p = 0, then r = |i — 0| = 1. Therefore, analytic
solutions about z = 0 exist for |z| < 1. If p = 1, then r = [i — 1| = /2. There-

fore, there exist two linearly independent series of the form »° a, (z —1)"

0.

yl/ +

converging to the solutions for at least |z — 2| < v/2.

Note that the existence and uniqueness theorem (see Chapter 10) guarantees
solutions from —oo to oo (since 22 + 1 has no real zeros), but only in a finite
subinterval can we guarantee that the solutions are expressible as convergent

power series. *

Example 8.7. Consider y’ — zy’ — 2y = 0. It has no singularities. Therefore,

a series solution converging on R exists about any point. *
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8.4 Power Series Solutions: Levels of Success

When using power series techniques to solve linear differential equations, ideally
one would like to have a closed form solution for the final answer, but most often
one has to settle for much less. There are various levels of success, listed below,
and one would like to get as far down the list as one can.

For simplicity, we will assume that we have chosen to expand about the
point « = 0, although the same considerations apply to = ¢ for any c.

Suppose 0 is an ordinary point of the equation L(z)y” + M (z)y'+ N(z)y =0
and let y = >_°° ; a,z™ be a solution. One might hope to:

1. find the coefficients a,, for a few small values of n; (For example, find the
coefficients as far as as which thereby determines the 5th degree Taylor

approximation to y(z));

2. find a recursion formula which for any n gives a2 in terms of a,_1

and ay;
3. find a general formula a,, in terms of n;
4. “recognize” the resulting series to get a closed form formula for y(x).

In general, level (1) can always be achieved. If L(x), M(x), and N(x)
are polynomials, then level (2) can be achieved. Having achieved level (2), it
is sometimes possible to get to level (3) but not always. Cases like the one
in Example 8.1 where one can achieve level (4) are rare and usually beyond

expectation.

8.5 Level 1: Finding a finite number of coeffi-

cients

Suppose ¢ is an ordinary point of Equation (8.3). One approach is to finding

power series solutions is as follows. Expand P(z) and Q(x) into Taylor series
P($>:an($—0)n, Q(m)zan(x—c)”.
n=0 n=0

and set y = > ay, (z — ¢)" solves the equation. Then

o0

o0
y = Znan (z—c)" ", y' = Zn(n— 1) apz™ 2,
n=0

n=0
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and Equation (8.3) becomes

y'! P(x) Y

oo

5 v oo o) (=)
(S} (St o

Q(z) Yy

Since p,,’s and ¢,,’s are known (as many as desired can be computed from deriva-
tives of P(x) and Q(z)), in theory we can inductively find the a,’s one after
another.

In the special case where P(z) and @Q(z) are polynomials, we can get a
recursion formula by writing a,,42 in terms of a,, and a,—1 (level 2) and, under
favourable circumstances, we can find the general formula for a,, (level 3) as in
Example 8.1. But in general, computation gets impossibly messy after a while
and, although a few a,’s can be found, the general formula cannot.

But if you only want a few a,’s, there is an easier way. We have a, =
y™(c)/n!, so

y'(c) _ P)y'(c) +Qc)yle) _ —a1P(c) — aoQ(c)

T 2 - 2 :

a =219 - %(—P’(c)y’(c) — P()y” = Q'(c)y(c) — Qe)y'(c))

(—P/(C)Cbl + a1P(6)2 +;0P(C)Q(C) _ ale(C) _ alQ(C)) ,

ay = -+,

and so on.

Example 8.8. Compute the Taylor expansion about 0 as far as degree 4 for
the solution of y" — €™y’ + xy = 0, which satisfies y(0) =2 and y/(0) =1.  *

Solution. Rearranging the equation, we have y” = €5y’ — xy. Therefore

y///: 5z //+565m ! :Ey’—y

y(4) _ oz ///+5egx I/+5eom " :cy”fy'fy'
5m ///+10€5az //_xy _2y/.
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Substituting gives
y"(0) =e"y'(0) —0 =1

y"(0) = %" (0) + 5e%(0) =0 —y(0) =14+5-2=4
y @ (0) = %" (0) + 10e%y"(0) — 0 — 23/ (0) =4+ 10 — 2 = 12

Therefore,
2?2 423 1224
2' 3' 4!
1
=92 Z s B N
+z+ 236 + 33: 50+ O

Example 8.9. Find the series solution for y” + (x4 3)y’ — 2y = 0, where
y(0) =1 and y'(0) = 2. *

Solution. Rearranging the equation, we have y”" = — (x 4+ 3) ¢’ + 2y. Then

y"(0) = — (0+3)y/(0) +2y(0) = —3-2+2-1 = —4,

y"' ==y —(@+3)y +2y = (z+3)y" + v,
y"(0) = =3y"(0) +y'(0) = (=3) (-4) +2- 1 =12+ 2 = 14,
y@® = =34

Therefore,

422 142° 342t
o T T
17 ,

7
:1—|—2x—2x2+§x3—ﬁx +

y=14+2z—

In this case, since the coefficients were polynomials, it would have been possible
to achieve level 2, (although the question asked only for a level 1 solution).
However even had we worked out the recursion formula (level 2) it would have

been too messy to use it to find a general formula for a,. O
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8.6 Level 2: Finding the recursion relation

Example 8.10. Consider (x2 —5r + 6) y" — 5y’ — 2y = 0, where y(0) =1 and
y'(0) = 1. Find the series solution as far as 2> and determine the lower bound

on its radius of convergence from the recursion formula. *

Solution. We have

oo
2y = Z 2a,2",
n=0

5y’ = Z Snan,z" "t = Z 5(n+1)aptiz" = Z 5(n+1)aptiz”,
n=0

n=0 n=0

6y =360 (n—1)ans""? = 3 6(n+2) (n+1) ans2e",
n=0

5xy” = Z 5n(n—1)az" ' = Z 5(n+1)nap412",
n=0

oo
vy = Z n(n—1)a,z".
n=0

Therefore,

N nén— )1)n o [ 6(n+2)(n+1)anss
_ nay

> ! =3 st ) (it a, |,
~| +6 i) (n+ ) an+2 n=0 \ (n2 —n— 2) n,

1)a
(n+
(n+
=5(n+1)ant: —

so it follows that
6(n+2)(n+1)anp2 —5(n+ 1) ans1 + (n+1) (n—2) a, =0,

_5 n+1 1 n—2
Unt2 = g Mt T 5 2

Q.

With ag = y(0) =1 and a; = ¢'(0) = 1, we have

5.1 1 =2 ,£+E,l
2= M T T T 1y
5 2 1 —1 5 7 11 35 6 41
a3 =—+-—-———" —a] = - — _— = — _ =
63 6 3 91276 '3 108 108 108
Therefore,

L S I S
y=1+o+ 5o+ e
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Notice that although we need to write our equation in standard form (in
this case dividing by 22 — 52 + 6 to determine that 0 is an ordinary point of
the equation), it is not necessary to use standard form when computing the
recursion relation. Instead we want to use a form in which our coefficients are
polynomials. Although our recursion relation is too messy for us to achieve
find a general formula for a,, (level 3) there are nevertheless some advantages
in computing it. In particular, we can now proceed to use it to find the radius
of convergence.

To determine the radius of convergence, we use the ratio test R = 1/|L|,
where L = lim,,_ o (@p+1/ay), provided that the limit exists. It is hard to prove
that the limit exists, but assuming that

n+2 5 n+1 1 n—-2 a,

ani1 6 ‘n+t2 6 n+2 Gny1’
taking the limit gives

5
L=2.1—
6

=3
| =
SIS

=
SIE

So 6L? = 5L — 1, and solving for L gives L = 1/2 or L = 1/3. So R = 2 or
R = 3. The worst case is when R = 2. Therefore, the radius of convergence is

at least 2. Theorem 8.3 also gives this immediately. o

Example 8.11. Consider (:c2 —5r + 6) y”" — 5y’ — 2y = 0. Find two linearly

independent series solutions y; and y» as far as x°. *

Solution. Let y;(x) be the solution satisfying y;(0) = 1; y1(0) = 0 and let yo(x)
be the solution satisfying y2(0) = 0; y5(0) = 1. Then y;(x) and yo(z) will be
linearly independent solutions. We already computed the recursion relation in
Example 8.10. For y(z), we have ag = y(0) = 1 and a; = 3/(0) = 0. Thus,

5 1 1 2 1
“2—6'2“16(2)“0—67
5 2 1 1 5

03 =5 39275 3T 5y

Therefore,
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For ya, we have ap = y(0) = 0 and a; = 3'(0) =1, so

5 1 2 5
2= 5 3017 50 = 1y
5 2 1 5 2 5 1 25 6 31
“3—6'3“2‘(‘3)a1:6'3‘12+m:108 108 ~ 108
Therefore,
2 61 3
yz—:c—kﬁ:c +1—O8x+
With
y=ltat a4 sy
12 108

Looking at the initial values, the solution y(z) of Example 8.10 ought to be
given by y = y1 +y2, and comparing are answers we see that they are consistent
with this equation. O

Summarizing: Let p be a regular point of the equation
y' + P(z)y + Qz)y =0, (8.3)

Let D be the distance from p to the closest singularities of P or @ in the complex
plane. Then Equation (8.3) has two linearly independent solutions expressible
as a convergent power series Y.~ a, (z —p)" with |z — p| < D. Theorem 8.5

guarantees that the radius of convergence is at least D, but it might be larger.

Given ap = y(p) and a; = ¥'(p), to find a,, we have a,, = y™ (p)/n!. We
can find as many a,’s as desired, but in general we cannot find the formula.
Since we have y’ = —P(x)y’ — Q(x)y, it can be differentiated to give y"”’(p)
and higher derivatives can be found by further differentiation. Substituting the

values at p gives formulas for the a,’s.

In the special case where P(z) and Q(z) are polynomials, we can instead
find a recurrence relation. From the recurrence relation there is a chance to get
the formula for a,, (if so, then there is a chance to actually recognize the series).
Even without the formula, we can determine the radius of convergence from the
recurrence relation (even if P(z) and Q(z) are not polynomials, we could at
least try to get a recurrence relation by expanding them into Taylor series,but

in practice this is not likely to be successful).
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8.7 Solutions Near a Singular Point

A singularity a of ¥y’ + P(x)y’ + Q(x)y = 0 is called a regular singularity if
(z —a) P(z) and (z — a)* Q(z) are analytic at « = a. To simplify notation, we
assume that a = 0 (we can always change the variable by v = z — a to move
the singularity to the origin). We assume that > 0. For < 0, we substitute
t = —x and apply below to t.

Our primary goal in this section is to consider the Method of Frobenius. We
look for solutions of the form
y:xa(ao+a1x+..._~_angj"+...) :aoxa—i-alaro‘ﬂ+-~~+anx“+"—|—~--
for some «, where ag # 0. Then
Y =aaz®  day (a+ 1)+ Fa, (@+n) ™4
y' =aa(a—1)2"? +aa(a+1)2* -
+an(a+n)(a+n—1)z>™m 2 4.
eP(x) =po+prz+- +ppx” 4,
2?Q(z) = qo+ qa + -+ gz + -

So if x # 0, then

aoa(a_1)xa—2+a1(a+1)axa—1_i___._,'_an(a_,r_n)(a_’_n_1)ma+n—2+...
+2° 2 (apa+ay (e + D)z + -+ ) (po+p1z+ -+ paz” + )
+2°7 (ag + a1z + -+ anz") (@ + Qr + -+ gua” +---) = 0.

We have
apa (a0 — 1) + agapg + apqo = 0, (0)

ai (o +1)a+ay (a+1)po + agapr + apqr + a1qo =0, (1)

Note that Equation (0) implies

ala—1)+apy+4qg =0,
a®+ (po—1)a+qo = 0. (8.4)



98CHAPTER 8. POWER SERIES SOLUTIONS TO LINEAR DIFFERENTIAL EQUATIONS

Equation (8.4) is known as an indicial equation. Solving for « gives us two
solutions. Then Equation (1) gives a1 in terms of ag, Equation (2) gives ay in
terms of ay, etc. We will get the solution y = agz® (x). Other « gives a second
solution y = byx?® (x). The plan is to find a, from Equation (n) for n > 1.
Equation (n) looks like

(%) an + (%) ap—1+ -+ (x)ag =0,

where the coefficients are in terms of «a, pg,...,Pn,q0,---,qn. There is one pos-

sible problem: what happens if the coefficient of a,, is zero? Note that

Y+ P(x)y +Qz)y =y" + xP(:v)y; + 172@(%)%,

so we have

y' +xP(z ) +x2Q Zan a+n)(a+n—1)z*Tn2
+ (po + P17+ paa® + ) Zan (o +n)xotn—2
+ (g0 + qr+ g2’ +--) > anz®

In Equation (n), the coefficient of a,, is
(a+n)(a+n—1)+po(a+n)+ q.

Suppose that
(a+n)(a+n—1)+po(a+n)+q =0.

Let 8 = a+n. Then
BB—=1)+pof+q =0

is the indicial equation again, i.e., 3 is the other solution to the indicial equation.
We conclude that if two solutions of the indicial equation do not differ by an
integer, the method of Frobenius provides two solutions.* If the two solutions
do differ by an integer, then the larger one will give a solution by this method,
but the smaller one may fail.

Let F(A\) = A(A—1) + poA + go- Suppose the solutions to F(A) = 0 are r

*This includes the case where the solutions are complex, i.e., in this case, we get a complex
solution z = %% (¢ + c1z + ), so y1 = Re(x) and yo = Im(z) give two real solutions.
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and r + k, where k € ZT. Given f(z), set

L(f)(x) = f"(2) + P(x) () + Q) f (x).

Let w = Zflozo anx™, where a, is to be chosen. For any given «, we have

L(z%w) = Z Cpz®2tm,
n=0

where ¢, = F(a + n)a, + (*x) an—1 + -+ + (x) ag. Chose a9 = 1. Then for
n > 1, we can always solve ¢, = 0 for a, in terms of its predecessors unless
F(a+n) =0. Provided that a # s — 1,5 —2,..., we have F(a +n) # 0 for any
n, so we can solve it. Suppose that we call the solution a, (@), i.e., ag(a) = 1 for
any a and a,, is chosen to make ¢,, = 0 for this .. Set W(a,z) =Y 0" an(a)z™.
Then

oo
L(z%w(o, x)) = Z Cpr® 2T = o2
n=0
But since ¢, = 0 for n > 0 by the choice of a,(a), we have
L(z®w(a, ) = F(a)z® 2,

Since F(s) = 0, y1(z) = x*w(s,x) is the solution to the DE. We now need
a second solution. Unfortunately, we cannot set @ = r since our definition of

an(a) depends on « # s (positive integer). Instead, set
L(z*w(a, r)) = F(a)z®* 2

and differentiated with respect to «. Note that for g(«, ), we have

0 dg
(Lo = L[ 22
Ox (L9) (8x>
since differentiation with respect to x commutes with differentiation with respect

to a (cross derivatives equal). Therefore,

L <1’0‘ In(z)w(a, ) + xagz}) = F'(a)z*? 4+ F(a)z® ?In(z).
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But note that

a=s= L<ln(:z:)a?sw(s )+ (

JEEe

= L(ln( Jy1 + <

If k=0, then

is the second solution to our DE.

If £ > 0, consider

L <xr i anx"> =L (xr i CniCan) )
n=0 n=0

where a,,’s are to be chosen and ¢, = F(r+n)a, +---. We have ¢g = F(r) =0,
where 7 is the root of the indicial equation. Select ap = 1 and inductively choose
ai,...,ay, such that c{,...,c, = 0. With this choice, we have
oo
L <xr Z anx"> Z Cpa™ T2 = T2 4 Z )z 2,
n=0 n=k+1

where ¢y, is independent of the choice of a. Set A = ¢;/k. Then

L (:);'7" Z apx” — A [ln(m)yl (m) + z8 ((;: ):|> _ Z Cnmr+n—2’
=0 a=s n=k+1

k-1

ag+arx+ -+ ap—12

x" ow & o
I + (ak —A 870[ a_s) xT _ Z Can-HL—?.
= n n=k+1
+ Z anz™ — Aln(z)y; (x)

n=k+1

The choice of a; does not matter—we can choose any. Then inductively solve
for ax41,ak42,. .. in terms of predecessor a,’s to make ¢, = 0 for n > k. This

gives a solution to the DE of the form

2= Zanx — Aln(z)y1 (z).

n=0
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We conclude that if 0 is a regular singularity, then there are always two

linearly independent solutions (converging near 0)

=2 anz",  yp=2"» bya" + B(ln(z))y,
n=0

n=0

where r and s are the two solutions to the indicial equation. We have B = 0,
unless s = r + k for some k € {0,1,2,...}.

Example 8.12. Solve 4xy” + 2y’ —y = 0. *

Solution. Let y = >~ janz®™™. Then
o0 oo
Z (a+n)apz®tnL Z (a+n)(a+n—1)a,z*T"2
n=0 n=0

Our differential equation now becomes

Z 4(a+n)(a+n—1)az®T™ !+ Z 2 (@ +n)a,z®t — Z a,z®t" =0
n=0 n=0 n=0

o0

S [M(atn)(atn—1)+2(+n)]ae =3 g, 2ol =0,

Note that

4(a+n)(a+n—-1)+2(a+n)=2(a+n)2a+2n—2+1)
=2(a+n)2a+2n-1).

Therefore,
200 (200 — 1) agz®™ Z (a+n)2a+2n—1) —a,_1]z*t L

Therefore, the indicial equation is 2a (o — 1) = « € {0,1/2} and the recursion
relation is
2(a+n)2a+2n—1)a, —an,—1 =0

forn > 1.

For a = 0, we have

1

2 2 —1 n — Qp— :O:> n=-——"——a,
n2n—1)a, — an—1 a 2n(2n—1)a

1.
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Thus,
1
ai 2. 1a07
! 1
az = 501 = o,
u 1 u 1 1
n=-———"""Qy_1 = = an.
@n)@2n—1) """ 2m@En—-1)2n-2)---  (2n)!"°
Therefore,

0 x 2 z"
y=z"ao |1+ 5+—+-+—-—!+--

21 4l (2n)
A CO T L
-0 21 " 4l (2n)
= ag cosh(v/z) .

For oo = 1/2, we have

1

1
2 (= 142n—1)b, =by g =>by = ——— b _
(2+”)( +2n—1) 1 ' (2n+1)(2n)b'

1-

Thus,

1

b _

1 3. 2b07

1 1

b2 5741)1 gb()?

1
b, = ——bo.

(2n +1)!
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Therefore,

2 n
oy (g T T At
y=e 0<+3!+5!+ Tenr T

12 23/2 5/2 2(2n+1)/2
—p z S
O( LT R C P s )

= b() sinh(ﬁ) .

In general, however, it is possible to only calculate a few low terms. We cannot

even get a general formula for a,,, let alone recognize the series. O

As mentioned, the above methods work near a by using the above technique
after the substitution v = x — a. We can also get solutions “near infinity”, i.e

for large x, we substitute ¢ = 1/2 and look at t = 0. Then

dy _dydt _dy( 1\ _ ldy = »dy
dr  dtdr dx x2) a2dt dt’

2 2 2
d%y 2dy__1dydt_2dy_1dy(_l)_2t3d +t4dy

22 dt dt?”

de? ~ Z3dt | a2 dtdr a3 dt 22 d?
Then
d*y dy 1 d?y dy 1 dy 1
—— + P(z)-= iy 22 ~ly=o.
gz TP, TRy =0= 1t +205 i) ta ez )Y
Example 8.13 (Legendre’s equation). Find the behaviour of the solutions
for large z of (1 — x?)y” — 2zy’ + n(n+ 1)y = 0, where n is a constant. *

Solution. Let t = 1/x so that x = 1/¢. Then our differential equation becomes

1 dy d?y 2 dy
1-— ) (282 44 S (s 1)y =0
( t2)( at dt2> t( dt)+”(”+ Jy=0,

(t* ftz)dy (2t3;2t/c»/2§)d—y+n(n+1)y:0,

dt?
d?y 2t dy N n(n+1)

¢y —0.
e “tat e Y

We see that we have a regular singularity at t = 0. Therefore, there exists a
solution y = ¢* "7 j ant™ near t = 0, or equivalently, since t = 1/x,
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for large x. O
Example 8.14. Find the solutions of y” + zy’ +y/x = 0 for positive x near 0.x

Solution. Let

oo oo
y =z g apr” = E anx™ T,
n=0 n=0

Then
y =Y an(n+a)ante,
n=0
LS
y' =Y an(n+a)(n+a-1)a"?,
n=0
xy’ — Zanmn+a — Zan_Zajn+a727
n=0 n=2
g — Zanxn+a71 _ Z an_lanran.
x n=0 n=1
Note that dicial
ndicial equation
—_—N—
apa (v — 1) =0, (0)
aa(a+1)a+ay =0, (1)
an(n+a)(n+a—1)+ap_1+ ap_2 =0. (n)

Note that Equation (0) implies that o = 0,1. The roots differ by an integer.
The largest always gives the solution. For o = 1, Equation (1) implies that

2a1 + ag = 0, so a; = —ap/2. Equation (n) then becomes

—Qp_1 — Oy
a,L(n+1)n+an_1+an_2ZOﬁanZW

Equation (2) implies that

1 a a
6a2:—a0—a1:a0(—1+>=—202>a2:—1;;
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Equation (3) implies that
1 1 7 7
12a3 =ap | =+ —= | =ap—= = a3 = ag——

Therefore,

As for the second solution, we have

y=2a" (bo + bz + boz® + -+ ) + Cln(z)ys,

C
Y =bu+2boa + -+ —yn + Cln(a)y,
C C C
y" = 2by + 6bsx + - — ﬁm + ;y’l + ;y{ + Ch’l(.’L‘)ylll

Therefore, our differential equation becomes

y”+my/+%:0,
C 2C
(2b2 + 6bs + 24bsa® + ) — 541 + —y + Cln(2)yf
+ (blx + 2y 4 - ) + Cy1 + Cln(z)zy) =0,
b
+ <;—|—b1+b2x—|—~"> +Cln(x)%

C 2C
(2b2 + 6b3x + 24b4.’£2 + - ) — ﬁyl + ?yi

b
+(b1m+2b2x2+---)+cy1+(£+b1+b2x+-~-)

:O7
+Cln(z)y] + Cln(z)zy; + C’ln(x)%
0
C 1 1 7
2 WUMbga? 4+ )= Z (1= Zp— —p2 4 —— 34 ...
(b2+6b3x—|— byix® + ) x( 233 1256 +144$ + )
2 1
+—C 1—z+fa:2+lx3+~~
x 4 36 _
2 Lo 1 3 7 4 =0
+ (biz + 2boz —|—-~-)—|—C<x—2x 3% —|—mx —|—>
b
+<$0+b1+b2:1:+~-~>
Looking at the coefficient of 2~ !, we have by — C +2C = 0 = C = —by.

Note that b; is arbitrary, so choose by = 0. Then the coefficient of 2° implies
that 2by + C/2 — 2C = 0 = by = — (3/4) by; the coefficient of z! implies that
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6bs +C/12+ C/24 C + by =0 = bz = (7/18) by. Therefore,

3 7 1 1 7
— 12220 20 000) e R BT ST N
Y2 = bg [( 4m +18$ + ) n(x) (m 23: 1233 +144x +

Example 8.15. Solve z2y” — zy’ + 10e*y = 0. "

Solution. Dividing out by x2, we have

y// Yy € y = 0.

We have a singularity at = 0. Note that 2P(z) = —1 and 22Q(z) = 10e* =
10>°77 2™ /n!. Therefore,

o0 y oo
Y= § :anxa+n’ = = 2 :anma—&-n—Q’
xT
n=0 n=0
0 y, o
E a4 n)az*t" L == E (a4 n)a,z*T"2,
T
n=0 n=0

oo
Z a+n)(a4+n—1)a,z*"2

With these components in place, our differential equation becomes

o0 o0
Z (a4n)(a4+n—1)a,z®"2 — Z (+n)apz®tm2
n=0 n=0

+10 (;} ) (Zoa potn 2) =0.

a(a—1)ag — aag + 10ap = 0.

We now have

Therefore, F(a) =a (e —1) —a+10 =0 = o = 1=+ 3i. For 1 + 34, we have

(a+1)aa; — (a+1)a; +10(ag +a1) =0,
F(a+1)ay + 10a; = 0.

Therefore,
10 10

Fla+1)™ ™ "F2+3)"

ap = —
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and
F(2+43i)=(2+3i))* —2(2+3i)+ 10
=4+120—-9—-4—-61+ 10
=1+ 6.
Therefore,
o — 10 o= 10 (1 — 61) a __10—60ia __10—60ia
T+ 0 (I+6)(1—6i) 0 1436 0 31 "
Also note that
a
(a+2)(a+1)as — (a+2)az + 10 (2—?+a1+a2) =0,
and we have
100 — 6002 175
F(a+ 2)as + 10a1 + bag = F(a + 2)ay — Tzao ?ao
— F(Ot + 2)0,2 + wao.
37
Therefore,
L T5E600i
2T 37TF(a+2) "

and we have

. 10 — 60i
Z:xl-‘r&ao (1_ (037602)x+)

213 = g2 = 2P — g lcos (3In(z)) + isin (3In(x))],

But

S0
z = agr cos(3In(x)) + apisin(3In(x))

+ ag (:1;7)2:2 cos(31n(x)) — %xQ sin(31In(x)) + % sin(31n(x))>

60 . , 10, 5 .
+ 37% cos(31n(x)) 374% sin(3In(z)) +--- .
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Therefore,
x cos(31n(x))
Re(z) = a +a? _10 cos(31n(x)) — 60 sin(31n(x)) + -
0 37 37
42 [x cos(3In(z)) + *sin(3In(z))] O
Example 8.16. Solve zy” 4+ (1 —2)y’ —y = 0. *

Solution. Note that

po= P e) = ey

and ,
qo = lin% 22Q(z) = lim 22 (—) =0.

x—0

Therefore, 0 is a regular singular point. The indicial equation is

a(a—1)+poa+qgo =0,
ala—1)+a=0,
2 —a+a=0,

a?=0.

Therefore, @ = 0 is a double root and

oo o0
Y 2" ya=Y bua"+Clu(x)yr, x>0
n=0

n=0

To find y;, we have
o0
y = Z a’najna
n=0
o0

o0
y' = Z na,z" ! = Z (n+1)apt12"™,

n=0 n=0
o0

y" = Z (n+1)nz" L

n=0
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Therefore, our differential equation becomes

oy +(1—-z)y —y=0,

Z [(m+ 1) naps1 + (n+1)apnt1 — na, — ay] 2™ = 0.
n=0

From this, we have

(n+1)napt1 + (n+1) any1 — na, — ap =0,

(n+1)2 anp1 = (n+ 1) an,

Qp
a. =
n+1 n+ 1
Therefore,
ago ai ag az ag ag
ag=—, Ga=—=—, a3=—=—", ..., QAp= —.
T T T BTy T "ol
So we have
o0 xn
J— — xT
Yy =ap Z m = ape.
n=0
Immediately, y; = e”. To find y; (see §5.1, p.57), we have
e—fP(a:) dz e—fszdm
y2:y1/y%adm:e$/€2xd$
o J(3-1)dz o—(In(z)—2)
=e / 5 dx =€ / T
e2x 6290
x —T
zm/ez/xda::e"c/ dz,
e xT
which is not an elementary function. O

Example 8.17. Solve (2% +2z)y" —2 (z? + 22 — 1) ¥/ + (22 + 22 — 2) y = 0.%

Solution. Let y=>_""  a,z®™™. Then

n=0

o0 o0

y = Z (4 n) aztmt, Y = Z (a+n)(a+n—1)az*t2.

n=0 n=0
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The DE then becomes

e} oo
Z(a+n)(a+n—1)an:v°‘+"+22(a+n)(a+n—1)anxa+"_l

n=0 n=0

-2 Z (@ +n)a,z®tmtl —4 Z (a+n)az*t
n=0 n=0
=0,

(o] o0
) Z (OL + n) anl,oHrnfl + Z anxa+n+2 +2 Z ananrnJrl

n=0 n=0 n=0

o0
Z (a+n—1)(a+n—2)a,_12*"!

n=1
+2 Z (a+n)(a+n—1)a,z*"t -2 Z (+n—2)a, ozt
n=0 n=2 =0
—4 Z (@4+n—1)a, 121 42 Z (a+n)apzetnt
n=1 n=0
o0 o0 (o)
+ Z an_3xa+n—1 +2 Z an_Qxa—i-n—l —9 Z an_lxa—i-n—l
n=3 n=2 n=1
. 2(a+n)(a+n—1)4+2(a+n)|a,
S +lla+n-1)(a+n-2)—4(a+n—1)=2a,_1 ||2*T""" =0,
n=0 +[2(a+n—2)+2]an—2+ an_3

i 2(a+n)2an+[(a+n)2—7(a+n)+4]an,1 _0

ne0 +[-2(a+n)+6]an—2+an_3

Note that 2a?> = 0 = « = 0, giving us a double root. Therefore we get the

recursion relation
2n’a, + (n2 —Tn+ 4) ap—1+ (—2n+6)ap—2 + an—3 =0.
Substituting gives

2a1 — 2a¢9 = 0 = a1 = ay,

1
80,2—6&1—"-2&0:028(12:60,1—2(10:(6—2)@):4(102@0:5,

1 1

18a3+(—8)a2+(0)a1+a2:O=>18a3:8~§—1:3:>a3:67
32a4 — 8az — (—=2) ag + (0) a; +az = 0 = 32 O . SN
a4 as as al ag = az = 6 2 —3 a3—24.
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If we our intuition leads us to guess that perhaps a,, = 1/n! be can use induction
to check that this guess is in fact correct. Explicitly, suppose by induction that
ar, = 1/k! for all k < n. Then the recursion relation yields

n>—Tn+4 2n—6 1
o= T2 -3
—n?+Tn—44+2n—-6)(n—1)— (n—1)(n—2)
(n—1)!
—n?+Tn—4+2n?—8n+6—n?+3n—2
(n—1)!

on? A =

(n—1)!

and so a, = 1/n!, completing the induction.

This gives the solution y; = Y7 j2"/n! = e*. (If we had guessed initially
that this might be the solution, we could easily have checked it by direct subsi-
tution into the differential equation.) Using reduction of order, one then finds

that the solutions are

xT

p=¢",  ys=xe” +2In(x)y;. o

8.8 Functions Defined via Differential Equations

8.8.1 Chebyshev Equation

The Chebyshev equation is given by

(1—2*)y" —zy + XNy=0 (8.5)
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of which 0 is an ordinary point. The series solution is guaranteed to converge
for |z| < 1. We have

o0
_ n
y_ § anx 9
n=0
o0
y = g na,z" 1,
n=0
oo

y' = Zn(n —1Dapz" 2= Z oo (n+2)(n+1)apea”,

n=0 n=0
and our differential equation becomes

Z [(n+2) (n+1)ans2 —n(n—1)a, —na, + \a,] 2" = 0.

n=0

From this, we see that

" _n(n—1)+n—/\2a _ n? — \? u
T mt2)(n+1) T m+2)(n+ 1)
Therefore,
)\2
ap =1, a; =0, a=—7, az =0,
22 4— 2% (=N
o U
(16 — A?) (4 =A%) (=A?)
ag = 6! )

(4 (n—1)* - >\2) (4 (n—2)* - )\2) c(222)
(2n)!

a9y = ai.
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Also,

_ (=2
3.2

ay,

((2n 1) )\2) (1= 02)
(2n 4+ 1)!

a2p41 = ay.

Note that if A\ is an integer, then one of these solutions terminates, i.e.,
ar = 0 beyond some point. In this case, one solution is a polynomial known as

a Chebyshev polynomial.

8.8.2 Legendre Equation

The Legendre equation is given by
(1—2?)y" =22y + XA+ 1)y =0 (8.6)
of which 0 is an ordinary point. The series solution is guaranteed to converge

for |x| < 1. Expressed as a power series, the equation becomes

Z: [(mn+2)(n+1)apnta —n(n—1)a, — 2na, + A(A+ 1) a,] 2" = 0.

n=0
From this, we have

an+2:n(n—l)+2n—/\()\+1)a :n(n+1)f)\()\+1)a”.

(n+2)(n+1) " (n+2)(n+1)

If X\ is an integer, then ar = 0 for k& > X gives the Ath Legendre polynomial.

Instead, expanding around z = 1 gives

T

p(x) — 1_22
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Then

po = lim1 (x—1)P(x) = 1irn1 ,

x—i—lz
A —
2 -1

N N =

0.

g = lim (z — 1)*Q(a) = — lim (z — 1)°
r—1 r—1
Therefore, x = 1 is a regular singular point. The indicial equation is

a(a—1)+poa+qo =0,
1
a(a—1)+§a+QO=07

2
— — :O
« a+2a R

a2—§a:0.

Therefore, & = 0 or aw = 1/2, so the solutions look like
=Y a(z-1"  p=E-1"Y by (a-1)"
n=0 n=0

for x > 1.

For a Legendre equation, around x = 1, we have
. 2x
po = lim (z —1) <—1_x> =5

qo = hml (z — 1)2M

=0.
T— 2 —1

Therefore, x = 1 is a regular singular point. The indicial equation is

a(a—1)+poa+qo =0,
ala—1)+a=0,

a? =0.

Therefore, a = 0 is a double root and the solutions look like

ylzzan(xfl)nv yQZan(xfl)nJrCln(x*l)yl
n=0

n=0

for x > 1.
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8.8.3 Airy Equation

The Airy equation is given by
y' —xzy=0 (8.7)
of which 0 is an ordinary point. The solution converges for all z. Expressed as

a power series, we have

oo

Z [(n+2)(n+1)ani2 —an_1]2™ =0.

n=0

From this, we see that

a _ Ap—1
n+2 (TL+2) (n+1)a
therefore,
o= 20— %0 P o
2732 T 6.5 v T 903.5.6-8-9---(3n—1) (3n)’
-4 - a1
“Epy o BT T BBt 1)
GQZ%ZO, O—ag—a5—a8—

8.8.4 Laguerre’s Equation

Laguerre’s equation® is given by
) —(1—-2)y + X y=0 (8.8)

of which 0 is a regular singular point. Note that

—(1—
Po = lin})x((m)> = -1,

T

A

go = lim 2= = 0.
x—0 xX

*Applicable in the context of the hydrogen atom.
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Therefore, x = 0 is a regular singular point. The indicial equation is

ala—1)—a=0,

a2—a—a=0,

o — 20 =0,

ala—2)=0.

Therefore, & = 0 or @ = 2, so the solutions look like

o0 o0
Yy = x° Z anz"”, Yo = Z bpz" + Cln(x)y;
n=0

n=0

for z > 0.

8.8.5 Bessel Equation

The Bessel equation is given by
2y +ay' + (22 — Ay =0. (8.9)

We have

The indicial equation is then

ala—1)+a—-I=0,
a® =\ =0,

(a+A)(a—=X)=0.

Therefore, & = +A. If A # k/2 for some integer k, then we get

oo o0
A n - n
Y= E anx", Yo=1T E an®

n=0 n=0
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for x > 0. We encounter trouble if A = k/2. Consider A =1/2. Then

Y = x1/? Z anx”, Ya = x~1/2 Z bpz™ + Cln(z)y;.
n=0

n=0

For y;, we have

n2—1/4

Therefore, the equation 2?y” + zy’ + (2 — 1/4) y = 0 becomes

n=0

From this, we see that

712—1—&—114—1—1 an +a =0
4 2 4 n n—2 — Y,

Therefore,

gy — 20 L _%2 % o __% azn = (—1)"
2 3.9 04 s % ceo, G2p

Therefore

oo
q;2"+1/2

1 1 1
2 - - - n+1/2 _
E Kn 4) a, + <n+2) Ay + A2 4an}x =0.

B 1 00 " x2n+1 sin J))
= (Vg T Y @ o } |

n=0

ao

117

(2n+ 1)1
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Example 8.18. Identify

> 30 S
y = S [
7;) (3n)! 316 9! “
Solution. We seek to solve 3"/ = . From this, we see that
A —1=0,

A=D1 +Ar+1)=0.

Therefore, A =1 or

\o TrEVI-4 1 V3
==

——x ¥
27 "

Therefore, the general solution is

w

y=Cie® + Core /% sin (?z) + 036*1/2 COoS <\2fI> ’

where C1, Cy, (3 are arbitrary constants.

To find C1, Cy, C5, we note that

Therefore,

Ci14+0C,+C3=1,

V3 1
C’1+702—§C’3 =0,
V3 1

01—702—§C3 :O
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Solving this system, we have

10 1|1 10 11 10 1]1
3 _1 3 3

1§—§0~0§51~0—§g1~
3 _1 3 3

1 - 110 0 % 31 0 0 3|2

10 1|1 1 0 03 1.0 0]3
1 2 1

0 —Z5 1|3 |~]0 55 0/0|~]|0 1 0]0

0 0 1|3 0 0 1|2 00 1|3

Therefore, C;y =1/3, C3 =0, and C5 = 2/3, so

1 2
y=-e"+ —e /2 cos ﬁx .
3 3 2 o
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Chapter 9

Linear Systems

9.1 Preliminaries

Consider

ﬂ =AY + B,
dx
where
c d Y2
such that i i
g by, D2 = ey o+ dye.
dx dx

We will first consider the homogeneous case where B = 0.

Only in the case when the entries of A are constants is there an algorithmic
method of finding the solution. If A = a is a constant, then we know that
y = Ce® is a solution to dy/dx = ay. We will define a matrix e® such that the
general solution of dY /dz = AY is Y = Ce™, where C = [C1,Cy,...,C,] is
a vector of arbitrary constants. We define eT for an arbitrary n x n matrix T
and apply T = zA. Indeed, we know that

2 3 4 n

t
t_ T T
6—1+t+2!+3!+4l+ +n!+ .

Therefore, let us analogously define

T2 T3 T"
T _

o (9.1)

121
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We will consider systematically how to compute eT later, but first we consider

an ad hoc example.

Example 9.1. Solve

av_[11]y
dx 0 1 "

Solution. First, we write

0 1
0 1
0 0

so that NI = IN = N and N2 = 0. Note that

where

N =

Binomial exp.

——N—
A" = (I+N)"

:In+ n Inle_i_ n In71N2+”.+ n Ianl +Nn
1 2 n—1

I+nN[1 n]
0 1

Therefore, with A™ properly defined, Equation (9.1) gives

Az 11 1 2 |a? 1 n | z"
et =1+ T+ — 4+ -4
0 1 0 112 0 1| mn
[ ltr S 0w 25 435 oty
0 1+x+§+...+%+...
G x(l+x+§+...+%’+...) e e
- 0 et B 0 e®

Therefore, the solution is
yr | | €7 ze” Cr | | Cie” + Coze®
Yo 0 e* Che” ’
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that is,
y1 = C1e” + Coxe®, yo = Cae”.

Is this in fact the solution of the equation? We have

d d § "
eAx(I+Ax+A25;+~~+A”x|+~~)
. n:

dx dx
n—1
= A+ A2 A&
+ A%r + + =10+
= Aeh?,

So if Y = Ce”*, then

dyY

— = ACe?” = AY,

dx
as required. Therefore, Y = Ce®* is indeed the solution. O
9.2 Computing eT
The easiest case to do is a diagonal matrix. If

A1
A2
D= ,
An
then
eM
e
eP =
etn

First, we consider the effect of changing bases. Suppose T is diagonalizable, that
is, there exists a P such that P~ TP is diagonalizable. Therefore, T = PDP~!
and

T? = (PDP') (PDP') = PD*P ..
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So in general, we have T = PD"P~!. It then follows that

T? "
T =I+T+ S+ + —
2! n!

D2 D"
:P(I+D++---+ +--->P—1
2! n!

=PePP
So if T is diagonalizable, we can compute eT.

Example 9.2. Compute €T, where

T =

4 1
3 2| N

Solution. First note that
4— A 1
3 2—-A
4-X)(2-X)-3=0,
8—6A+ A —3=0,
A —6A+5=0,
A=5)(A=-1)=0.

Therefore, A\ =1 or A =5. For A = 1, we have
4-1 1 a|l [o]
3 2-1 b| ’
31
31

3a+b
3a+b

a

b

o O o O o O

We see that b = —3a, so

HEEIE R
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For A = 5, we have

4-5 1 al [o]
3 2-5 bl o]’
1 1 a___O_
3 -3 bl o]’

—a+b'_'o'
3-3 | |0

We see that a = b, so

So let
1 1
P pr—
]
Therefore,
1 1 -1 111 -1
Pl=_— ==
Pl | 3 1 1 4 [ 3 1 ]
So
PTP — L 1 -1 4 1 11
3 1 3 2 -3 1

I

1=
1

wW =

|

— =
| S
1

|

w =

ot Ot
| I

What is P? For each eigenvalue A;, we find its corresponding eigenvector

v;. Then for P = [vy,Vva,...,v,], which is an n x n matrix, we have

A
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For Y’ = AY, we have

constant

~ _ —~
Y — cArQ — (PDP lxc — PP PLIC

= [v1,Va,...,Vy] . C

eAnr

= C1eMTvy + Coe™Pvy + - + Cre™ v,

where C = P~1C.
Example 9.3. Solve

y=|*1ly
13 2 '

Solution. First note that
4—\ 1
3 2—-A
4-XN(2-X)-3=0,
8§ —6A+ A2 —3=0,
A2 —6A+5=0,
A=5)(A=1)=0.

:O’

Therefore, A\ =1 or A =5. For A = 1, we have
4-1 1 al [o]
3 2-1 b| ’
3 1
3 1

3a+b
3a+b

a

b

o O o O o O
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We see that b = —3a, so

For A = 5, we have

0
0
1 1 |[a] [o0]
3 -3 bl |o|’
—a+b ] B [ 0 ]
3-3b | |0
We see that a = b, so i
a a 1
= = a
b a 1
Therefore, )
p— 1 1 7 D— 1 0
-3 1 0 5
and we have
v — 1 1 e 0 Cy B I &
| -3 1 0 ed® Cy | | =3¢ e Cy
Cre® + 0265x 5 1
= (e + Che”” ,
—3Ce* + 612659C ! — 2 1
that is,
Y1 = Cre® + 026517 Yo = —-3C1e* + 02651. O

If T does not have n distinct eigenvalues, computing eT requires greater

knowledge of linear algebra.*

Property 9.4
1. PAPT" — peAP-L,

2. If AB = BA, then eA1B = ¢A¢B = ¢BeA,

*MATB24.
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3. If
A1
A2
D= ,
An
then
eM
e
eP =
eA’Vl
4. If A™*t! =0, then
A2 An
A=T+A+ 4 —.
2! n!

Proof. We have already proved (1), and (3) and (4) are trivial. What remains
is (2). So note that

A2 An B2 B
eheP = (I+A++-~-+> (I+B++---+)
2! n! 2! n!

1
:I+A+B+§(A2+2AB+B2)+~--.

Also
A+B (A+B)’ (A+B)’
e =I+A+B+ o + 3l +
1
:I+A+B+§ (A’ +AB+BA+B?) +---,
which is the same as the above if AB = BA. O
Theorem 9.5

Given T over C, there exists matrices P, D, and N with D diagonal,
NF+1 = 0 for some k, and DN = ND such that T =P (D + N)P~1.
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Proof. Proof is given in MATB24. O

Corollary 9.6

We have eT = PePeNP~! (eP and eN can be computed as above).

Proof. Proof is given in MATB24. O

The steps involved in finding P, N, and D are essentially the same as those

involved in putting T into Jordan Canonical form (over C).

9.3 The 2 x 2 Case in Detail

Theorem 9.7 (Cayley-Hamilton)
Let p(\) = |A — MI|. Then p(A) = 0.

Proof. Proof is given in MATB24. O

The eigenvalues of A are the solutions of p(A) = 0. We now consider three
cases for the solutions of p(A) = 0.

CASE 1: p(X) has two distinct real roots Ay and Ay. This is the diagonalizable
case considered earlier. We find eigenvectors v and w for the eigenvalues A; and

)\2. Let
P— Vi Wi
Vo W3 .
Then
A 0
PlTP=| " :
0 Ao
SO
A1
Top| ¢ 0 pa
0 e

The solution of Y’ = TY would be

)\II
Y =P (& 0 Cl
0 ere® Oy
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in this case.

CASE 2: p(\) has a double root r. Let S = T —rI so that T =S+ rI. Since
SI =1IS, we have

0 e
Then
p(T) =0,
(T —rI)* =0,
S?=0
Therefore,
S=I4+S=I+T—-rI=T+(1-r)1I
and

e" 0
eT:(T—F(l—r)I)[ 0 eT]'

CASE 3: p(\) has complex roots r £+ iq, where g # 0. Let S = T — rI so that
T =S+ rI. Then

and

We then have

p(T) =0,
(T —r1)° + (qI)* =0,
S%+ (qI)* =0,

SZ+¢1=0.
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Therefore, S? — ¢I and it follows that

SQ S3
S _
€—I+S+§+§+

2 2 4 4 6
_ ¢’ ¢S ¢'T ¢S ¢l
S rcmtt e et

2 4 6 2 4
_ ¢ q v | q
_I<1—2!—1—4!—6!+-~-)+S(1—3!+5!—---)

S
=TIcos(q) + ” sin(q).

oT = (Cos(q)1+ (T;ﬂ) sin(q)) [ 60 f ] .

Therefore,

Example 9.8 (Double root). Solve

v — -3 -9
4 9 *
Solution. We have
p(A) =0,
-3-X -9
= 07
4 9— A

(=3-X)(9—X\)+36=0,
—27 —6A+ A2 +36=0,
A —6A+9=0,
(A—3)*>=0.

Therefore, A = 3 is a double root and we have Y = eA*C. For A, the eigenvalue



132 CHAPTER 9. LINEAR SYSTEMS

is 3. Therefore, for T, the eigenvalue is r = 3x. Hence,

Y:CT+ﬂ—rﬂ)lJ 01

0 €
3x 0
—(Az+(1-3)T)| . |C
0 e®
-3z -9z 1-3x 0 e 0
= + C
4z 9z 0 1-—3z 0 e
[1-62 - 3
_ T 9z e 0 C
4z 1+ 6x 0 e
B [ g3z _ Gre’® —9ze3® 4
N 4z’ e3% 4 6red® Cy
B [ o (63m - Gxe?“) — 9C,ze3®
| 40 ze3T + Oy (63”” + 69563””)
3z 3z —6 3z 3z 9
= Cie 4 + Cize ) + Che + Coxe 6 |1 O

Example 9.9 (Complex roots). Solve
v=|1 *ly
-1 -1
Solution. We have

p(A\) =0,

—1-A 4
‘ 207

-1 —-1-A

(=1=MN)(=1=X)+4=0
A+1)>+4=0.

Therefore, A = —1 £ 2i. For A, the roots are —1 & 24, so for T, the roots are
(=1 £ 2i)x, i.e., r = —x and ¢ = 2z. Note that

T—rI_i 0 4z |
q T2z 0 o

= O
SN
| I
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Thus,

Y = A*C

= <cos(2x)1+sm(2x) [ 0 3 ]) [ e(—)f e?z

INIE

cos(2z)  2sin(2z)
= C
i §s1n(233 cos(2x)
[ e~ cos(2z) T sin(2x) c,
B | ie"sin(2z) e 7 cos(2w) Cy

Cre 7 cos(2x) + 2C2e™ " sin(2z)
3C1e " sin(2z) + Cae ™ cos(2z)

9.4 The Non-Homogeneous Case

The general solution of Y = AY +Bis Y = Y;,C + Y, where Y, C is the
general solution of Y’ = AY. Therefore, Y}, C = AY,,C for all C, giving us

;1 =AY, (92&)
and Y, is a particular solution to Y’ = AY + B, giving us

Y/ = AY, + B. (9.2b)

To find Y, we use variation of parameters. Thus, we have
Y,=Y,V, (9.2¢)

where
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To find V, we have

Y, =Y.V,
Y; =Y, V+Y,V/,
~— =

(9.2b)  (9.2a)
AY,+B=AY,V+Y,V =AY, +Y, V"
N——

(9.2¢)

Therefore, Y, V' =B = V' =Y, 'B.

Example 9.10. Solve

Solution. As before, we have Ay = 1 and Ay = 5. Thus,

Vlz[ 1—3], VQ:[M].

11,]:):107
-3 1 0 5

and the solution of Y/ = AY is Y = PeP*C = Y, C. So we have

1 1 e® 0 e® €5
Y, =PeP" = ,
h= e [—3 1“0 e5l‘] 3¢ e5w]

Y}:l — e*Dibpfl —

Therefore,

P =

It follows that
1 et —e " ed® 1
V=Y 'B==C ——
h 4 [ 36751’ 6751 ‘| [ 6230 ] 4

1 4x x
1 e —e
v=-| *
4 3.1‘—%6_396
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and
1 e ehe ledr _ o
Y, =Y, V=" o e 4
4 —36 (& 31‘ — %6731
1 5,- 2,. 5,. 1 2,.
:1 ge°" —e " 4 3xe’® — ze*”
4 —%651 + 3e® + 9zed® — %62“"
1 _1 3 _ 1
_ 5w 16 —2z 4 52 | 4 2 12
=e lg +e [ 3 + xe [9 +e 1].
16 1 1 12
Therefore,
Y=Y,C+Y,
1
1 1 i6
_ Olem + 026595 + 65a: 16
-3 1 _3
16
_1 3 _ 1
2z 4 5z 4 2x 12
+e [ 3 + xe l 9 +e 0 ] R
4 1 12
where C'; and Cs are arbitrary constants. O

9.5 Phase Portraits: Qualitative and Pictorial
Descriptions of Solutions of Two-Dimensional

Systems

Let V : R? — R? be a vector field. Imagine, for example, that V(z,y) represents

*

the velocity of a river at the point (x,y).* We wish to get the description of
the path that a leaf dropped in the river at the point (zg,yo) will follow. For
example, Figure 9.1 shows the vector field of V(z,y) = (y,xQ). Let ~(t) =
(z(t),y(t)) be such a path. At any time, the leaf will go in the direction that
the river is flowing at the point at which it is presently located, i.e., for all ¢, we

have v/(t) = V(x(t),y(t)). If V(F,G), then

dx dy

= F = =G .
7 (z,y), 7l (z,y)
Y 2

*We are assuming here that V depends only on the position (z,y) and not also upon time
t.
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. . . ———
f Pt o ... 4! / /
7 Pt oo v oo, PRVEY f 3
"’f [ P ?7
f sy e womow o « 4t f f 2
27? oy e e o, « 4 f fﬁ
I [ b 2 e oo oo t f 1
;m‘,,,_,,..m% Y
> b toy P . T t 4
’ x Yoy [ : - : s oa i t 1
; Yoy [ t § - \¥
15 I RN [ N v _
% by oo cot § ?
Yoo Ve ow e oww oot 4 -
"”\ LT N vy h N’ 3\ \—\
\\‘\“,.,.‘ \\‘\\
Y 2 0 2 4 3 -2 -1 0 1 2 3 4
(a) The vector field plot of (y7 x2). (b) The trajectories of (y, x2)

Figure 9.1: The vector field plot of (y, mz) and its trajectories.

In general, it will be impossible to solve this system exactly, but we want to
be able to get the overall shape of the solution curves, e.g., we can see that in
Figure 9.1, no matter where the leaf is dropped, it will head towards (oo, 00) as
t — oo.

Before considering the general case, let us look at the linear case where we
can solve it exactly, i.e., V = (azx + by, cx + dy) with

dx dy
E—ax—kby, E—cm—i—dy,

<[]l

Recall from Theorem 10.12 (p.157) that if all the entries of A are continuous,
then for any point (zg,¥p), there is a unique solution of X’ = AX satisfying
x(tg) = o and y(to) = yo, i.e., there exists a unique solution through each

or X’ = AX, where

point; in particular, the solution curves do not cross.

The above case can be solved explicitly, where

X = At o
Yo

is a solution passing through (g, yo) at time ¢ = 0. We will consider only cases
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where |A] # 0.

9.5.1 Real Distinct Eigenvalues

Let A1 and Ay be distinct eigenvalues of A and let v and w be their corresponding

eigenvectors. Let P = (v, w). Then

P AP =

Therefore, At = P (Dt) P! and we have

At
To _ To e 0 &
X = et l = PcPip! 1 =(v,w) 0 hat o
Yo Yo € 2
CreMt
= (v,w) C;eAﬁ = CreMtv + CoreMiw.

Different C; and C5 values give various solution curves.

Note that C; = 1 and Cy = 0 implies that X = e *v. If \; < 0, then
the arrows point toward the origin as shown in Figure 9.2a in which contains a
stable node. Note that

X = CheMtv 4+ CheMtw = M2t (C’le(kl_’\”tv + ng) .

The coefficient of v goes to 0 as t — oo, i.e., as t — oo, X — (0,0), approaching
along a curve whose tangent is w. Ast — —oo, X = eM? (Cyv + CoeP2 = Mtw),
i.e., the curves get closer and closer to being parallel to v as t — —o0.

We have the degenerate case when \; < Ay = 0, in which case X = CjeMiv+
Cow.

The case when \; < 0 < Ay gives us the phase portrait shown in Figure 9.2b
in which contains a saddle point. This occurs when |A| < 0. The case when
0 < A1 < A gives us the phase portrait shown in Figure 9.2c¢ in which contains

an unstable node. We have
X = CreMiv + Che?tw = eM! (C’lv + C’ge(’\r’\l)tw) )

Therefore, as t — oo, X approaches parallel to w asymptotically.
Note that in all cases, the origin itself is a fixed point, i.e., at the origin,

' =0 and ¢y = 0, so anything dropped at the origin stays there. Such a point
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0 0
0 0 0 0
0 0
(a))\1<)\2<0 (b)>\1<0<)\2
0
0 0

[¢]

() 0 < A1 < A2

Figure 9.2: The cases for A\; and \s.



9.5. PHASE PORTRAITS 139

is called an equilibrium point; in a stable node, if it is disturbed, it will come
back in an unstable node; if perturbed slightly, it will leave the vicinity of the

origin.

9.5.2 Complex Eigenvalues

Complex eigenvalues come in the form A = o+ i, where § # 0. In such a case,

we have

X =CiRe (e)‘tv) + Oy Im(e)‘tv) ,

where v = p + iq is an eigenvector for A\. Then

e)\tv _ eozteﬁzt (p + zq)
= e (cos(ft) + isin(ft)) (p + iq)
= e (cos(Bt)p — sin(Bt)q + i cos(Bt)q + isin(Bt)p) .

Therefore,

(Cy cos(Bt)p — Cy sin(Bt)q) + C cos(Bt)q + Ca sin(Bt)q]

k1 cos(Bt) + ko sin(St)
ks cos(0t) + kq sin(ft)

|
( (6) [ T sin(Bt) [ ’;2 D

Note that tr(A) = 2a.* So

Consider first & = 0. To consider the axes of the ellipses, first note that

C Cs

CQ —C1 Sil’l(ﬂt)

X — P a1
P2 Q2

cos(ft) ] .

P C

*Recall that the trace of a matrix is the sum of the elements on the main diagonal.
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Except in the degenerate case, where p and q are linearly dependent, we have

[ cos(f3t) —CclpIx.
sin(f5t)
Therefore,
cos(Bt) + sin(t) [ Z’jgg:)) 1 —x' (P 1) (c) ' c'P X,

cos?(At) + sin(Bt) = X' (P~1)" (C71)" C7'P7IX,
1=X' (P (C) Cc'PIX.

Note that C = Ct, so

C}+ C3 0

Therefore,

C
-1 _
C =ara
(€)== 7

C?+C3’

Ci+C3)1 I
C—l tc—l — C—l 2 — ( 1 2 — )
(€™ (€™ (Cc2+c3)?  CP+C3

Therefore,

1

_ o~ —1\t —1\t ~—1p—1vy _
1_X(P )(C )C P X_iclg_i_c22

X' (P PIX.
Let T = (P_l)tP_l. Then X!TX = C} 4+ C3 and T = T? (T is symmetric).
Therefore, the eigenvectors of T are mutually orthogonal and form the axes of

the ellipses. Figure 9.3 shows a stable spiral and an unstable spiral.
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(a) a<O (b)) a>0

Figure 9.3: The cases for a, where we have a stable spiral when o > 0 and an
unstable spiral when a > 0.

9.5.3 Repeated Real Roots

We have N = A — \I, where N2 =0 and A = N + AL. So

eM 0
At = NERMT _ Nt XTI _ (] | Ny) L
0 e
Therefore,
C A0 C C
X=er| US| Pl=eMa+Ny | .
C2 0 e t CQ 02

Note that N2 = 0 = |[N|> = 0 = |N| = 0. Therefore,
ni1 no
any ang '

Also, N2 =0 = tr(N) =0 = n; + any = 0. Let

N =

v=|1a].

Nv:[ ny + ang ]:l()].
a(ny + ang) 0

Then
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So Av = (N + AI) v = Av, i.e, v is an eigenvector for A\. Therefore,
O Y Cy + (n1Cy + n2Cs) t
Cy

X = M (I + Nt
( ) Co 4+ a(ng +n2Cs)t

C 1
— M < 4+ (0 Cy 4 naCy) t )
02 [0
= 6)\t < gl + (n101 + 71202) tV) .
2

If A <0, we have

. o]
N
0
ast — oo. If A > 0, then - o
T 0
—
Y 0

as t — —oo. What is the limit of the slope? In other words, what line is
approached asymptotically? We have
CQ + (n1C1 -+ nQCQ) tVQ E

. Yy .
1 = =1 = ,
tggo x tggo Ci+ (nlcl + ’17,202) tvy Vi

i.e., it approaches v. Similarly,

i.e., it also approaches v as t — —oo. Figure 9.4 illustrates the situation.

We encounter the degenerate case when N = 0. This does not work, but

then A = A1, so
7 eAt 0
- 0 e)xt

which is just a straight line through

Cq
Cs

Cq
Cy

Ch
Cy

At

X = At -

b

Gy
s

Figure 9.5 illustrates this situation.
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0 0
0 O 0 0 O 0
0 0
(a) A <0 b)A>0

Figure 9.4: The cases for A, where we have a stable node when A < 0 and an
unstable node when A > 0.

1t
T
L&t

% %

NI

A<O0 b)A>0

Figure 9.5: The degenerate cases for A when N = 0, where we have a stable
node when A < 0 and an unstable node when A > 0.
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Chapter 10

Existence and Uniqueness

Theorems

10.1 Picard’s Method

Consider the general first order 1vP

Ay fy ),
{dm f(z,y) )

y(wo) = yo-

Picard’s Method is a technique for approximating the solution to Equation ().

If y(z) is a solution of Equation (x), then

| Bae= [ st an

giving us
v=w+ [ feu®)d ()
Zo
Conversely, if y satisfies (), then differentiating gives
d
P =0+ fla,y(@) = fla,y)

145
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and y(zo) = yo + 0 = yo. Therefore, the IvP (x) is equivalent to the integral
equation (k).

If p(x) is a function, define a new function P(p) by

(P() (x) =yo + / ’ f(t,p(t)) dt.

So a solution to (xx) is a function y(x) such that P(y) = y.

Picard’s Method is as follows. Start with a function yo(z) for which yo(xo) =
yo. Let y1 = P(yo),y2 = P(y1),---,Yn = P(Yn—1),..., and so on. Under the
right conditions (discussed later), the function y, will converge to a solution y.
Intuitively, we let y = lim,,_, o Yn. Since y,+1 = P(yn), taking limits as n — oo

gives y = P(y). Later, we will attempt to make this mathematically precise.

Example 10.1. Solve y' = —y, where y(0) = 1. *

Solution. We begin with yo(z) = 1. With g = 0, yo = 1, f(z,y) = —y, we

have
® 1
y1(r) = yo—i-/ f<7yo(t)> dt
xo T
:1+/ (-1)dt =1—x,
0
and
y2(z) = Yo +/ f(tyi(t)) dt
ro 1‘2
:1+/ —(A—t)ydt=1—az+ —,
0 2
and

x 2 2 g3
=1 —|1—t+=)dt=1— — - .
y3(x) —|—/O ( +2> x+2 3]

So in general, we have

2 n
B x nT
yn(a:)—l—ac—l—a—i-”-—!-(—l) g
Therefore, we finally have
) el n "
y(x) = Tim yn(z) =D (-1)" —.
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In this case, we recognize the solution as y = e™7. O
Example 10.2. Solve y' = x + 2, where y(1) = 1. *

Solution. Let yo(z) = 1. With 29 = 1, yo = 1, and f(z,y) = x + y2, we have

yl(x)zl—&—/lz(t+12)dt:1+/1m[(t—1)—|—2]dt

2 x 2
=1+ (t—1) +2(t-1) :1+<9€_Tl)+2(x_1)
2
=1+2(x—1)+@
and
yz(x)=1+/1$ t+<1+2(t—1)+(t_21)> dt
:1+2($—1)+g(9ﬁ—1)2+§(J;—1)3+%(9€—1)4—|-2i0(x_1)5.<>

Picard’s Method is not convenient for actually finding solutions, but it is

useful for proving that solutions exist under the right conditions.

Theorem 10.3

If f : X — Ris continuous, where X C R™ is closed and bounded (compact),
then f(X) is closed and bounded (compact). In particular, there exists an
M such that |f(z)| < M for all z € X.

Proof. Proof is given in MATB43. O

Corollary 10.4
Let R be a (closed) rectangle. Let f(x,y) be such that 0f /9y exists and is
continuous throughout R. Then there exists an M such that

|f(x,y2) = f(z,91)| < M |y2 — 1]

Lipschitz condition with respect to y

for any points (x,y1) and (x,y2) in R.
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Proof. Let R be a (closed) rectangle. Let f(z,y) be such that 9f /0y exists and
is continuous throughout R. By Theorem 10.3, there exists an M such that

of
- <M
L)<
for all » € R. By the Mean Value Theorem, there exists a ¢ € (y1,y2) such that
of
[, y2) = fla,p) = a—y(w,C)(yz = 11).

Since R is a rectangle, we have (z,¢) € R, so

%(x,c) <M.
Therefore, |f(z,y2) — f(@,y1)| < M |y2 — y1]. O

Theorem 10.5
Let f be a function. Then

1. f is differentiable at x implies that f is continuous at x.

2. f is continuous on B implies that f is integrable on B, i.e., fB fdav

exists.

Proof. Proof is given in MATB43. O

Definition (Uniform convergence)

A sequence of functions {f,} defined on B is said to converge uniformly to a
function f if for all € > 0, there exists an N such that |f(z) — f,(z)| < € for all
n>N.>*

*The point is that the same N works for all z’s. If each x has an N, that worked for it
but there was no N working for all z’s at once, then it would converge, but not uniformly.
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Theorem 10.6
Suppose that {f,} is a sequence of functions that converges uniformly to f
on B. if f, is integrable for all n, then f is integrable and

/ f(x)dV = lim [ fu(z)dV.
B B

n—oo

Proof. Proof is given in MATB43. O

Theorem 10.7

Let {f,} be a sequence of functions defined on B. Suppose that there exists
a positive convergent series Y.~ a,, such that |f,(z) — fo—1(z)| < ay, for
all n. Then f(z) = lim,,— fn(z) exists for all z € B and {f,} converges

uniformly to f.

Proof. Let {f,} be a sequence of functions defined on B. Suppose that there
exists a positive convergent series > -, a, such that |f,(z) — fr_1(2)] < an
for all n. Let

f'n(x) = fo(x) + (fl(x) - fO(x)) +oeet (fn(x) - fn—l(x))
= fo(z) + Y (fr(z) = fr-1(x)).
k=1

Therefore -
Tim fu(2) = fol) + 3 (fel@) = fia(2)
—_—— k=1
f(=)
and - .
1f(@) = fa@)] = D (flz) = fica(@) < D ap<e
k=n+1 k=n+1

for n sufficiently large, since > -, a,, converges. Therefore, f,, converges uni-
formly to f. t
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10.2 Existence and Uniqueness Theorem for First
Order ODE’s

Theorem 10.8 (Existence and uniqueness theorem for first order OpE’s*)
Let R be a rectangle and let f(x,y) be continuous throughout R and satisfy
the Lipschitz Condition with respect to y throughout R. Let (xq,yo) be an
interior point of R. Then there exists an interval containing xy on which

there exists a unique function y(z) satisfying v’ = f(x,y) and y(xg) = yo.**

To prove the existence statement in Theorem 10.8, we will need the following

lemma.

Lemma 10.9
Let I = [zg — a, o + ] and let p(z) satisfy the following;:

1. p(z) is continuous on I.
2. |p(z) —yo| < aforall z el

Then [ f(t,p(t))dt exists for all x € I and g(x) = yo + [, f(t,p(t))dt
also satisfies (1) and (2).

Proof. Let I = [x9 — o, z9 + «] and let p(z) satisfy the following:
1. p(z) is continuous on I.
2. |p(z) —yo| < aforall z el

Immediately, (2) implies that (¢,p(t)) € R for t € I. We have

f

] — R —— R

t —— (t,p(t))

so f is continuous, hence integrable, i.e., f;o f(t,p(t)) dt exists for all z €

I. Since ¢(z) is differentiable on I, it is also continuous on I. Also, since
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|f(t,p(t))] < M, it follows that

lg(x) — yo| =

/ £t p(1)) dt’ < M|z — 2| < Ma < a.
)

Proof (Proof of existence statement (Theorem 10.8)). Let R be a rectangle and
let f(z,y) be continuous throughout R that satisfy the Lipschitz Condition with
respect to y throughout R. Let (xo,y0) be an interior point of R. Since f is
continuous, there exists an M such that |f(r)] < M for all » € R. Let a be the
distance from (zg, yo) to the boundary of R. Since (zg,yo) is an interior point,
we have @ > 0. Let a = min(a,a/M). We will show that ¥’ = f(z,y), where

y(x0) = yo, has a unique solution on the domain I = [zg — a, zg + .

Inductively define functions (1) and (2) of Lemma 10.9 by yo(x) = yo for all
z €I and

Yn(z) = Yo + /x F(t, yn—1(t)) dt.

By Lemma 10.9, the existence of y,_1 satisfying (1) and (2) guarantees the
existence of y,,. By hypothesis, there exists an A such that |f(z,v) — f(z,w)| <
A |v — wl|, whenever (z,v), (z,w) € R. As in the proof of Lemma 10.9, we have
ly1(z) — yo(@)| = [y1(z) — yo| < M |2 — 20|
for all x € I. Likewise, we have
(o) @)l = | [ 00 = st mle]
o
<| [ 1mo) - syl
Zo

<|[ A ~ (ol

xT
< / AM|t—a:0|dt‘
o

2
< palr=zl
2
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and

a) =) = | [ e = S0t
<| [ 15temie - st n(o)la

g/ (AMA|;O> dt

3
< MAQL — 2o
- 3! ’

Continuing, we get

MAn—lan

n(@) — g ()] < S

We have
Yn (@) = yo(z) + (1(z) — yo(2)) + (y2(2) —y1(2)) + - + (Yn () — Yn—1(2))
) + Z (yr(2) — yr—1(z)) .
k=1

Since =
MA "«
pel@) = g ()] < =
and -
MAkflak 7% Aafl
D T N G
k=1
converges, we must have
Jim g (2) = yo(@) + Y (yk() = yr-1())
k=1

converging for all x € I. Therefore, y(z) = lim, o0 yn(x) exists for all x € T

and y,, converges uniformly to y.

Note that

[f (@, yn (@) = [ (2, yn—1(2))] < Alyn(z) = yn—1(2)|
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implies that f(z,y,(x)) converges uniformly to f(z,y(z)). With

() =w+ [ W g () d,

we then have

n—oo

vio) = Jim (o) = lim (3o + [ :f(t,ynl(t))dt)

=90 +/ (nlggo f(t,yn_l(t))) dt = yo +/ f(t,y(t)) dt
xo Zo
implying that y satisfies y'(z) = f(z,y) and y(zo) = yo. O

To prove the uniqueness statement in Theorem 10.8, we will need the fol-

lowing lemma.

Lemma 10.10
If y(x) is a solution to the DE with y(x¢) = yo, then |y(z) — yo| < a for all
x € I. In particular, (z,y(z)) € R for all x € I.

Proof. Suppose there exist an « € I such that |y(x) — yo| > a. We now consider
two cases.

Suppose © > xg. Let s € inf({¢t: ¢t > zo and |y(t) —yo| > a}). Sos <z <
xo + a < xg + a. By continuity, we have

a = ly(s) = yol = ly(s) — y(wo)| = [t/ (c) (s — wo)| = | f(c,y(c)) (s — wo)|

<M(s—zo)

for some ¢ € (zg, s). However,
sel=s—n<a=>a<M(s—zy) <Ma<a.

Therefore,
M(s—x9)=Ma= s—x9g=a= s=2x0+aq,

which is a contradiction because we have s < zg + a. The case with x < g is
similarly shown. O

Proof (Proof of uniqueness statement (Theorem 10.8)). Suppose y(x) and z(x)
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both satisfy the given DE and initial condition. Let o(z) = (y(z) — 2(z))?. Then

2(2)) (v (z) = #'(2))
(@) (f (2, y(2)) = f (2, 2(2))) -

o'(z) =

Therefore for all x € I,

o' ()] < 2]y(x) — 2(2)| Aly(z) — 2(z)|
=24 (y(z) - 2(x))”
= 2A0(z).

Therefore, —2Ac(x) < o'(z) < 2A0(z), and we have
o'(x) < 240(x) = o'(x) — 240(z) <0

= e 7 (o' (2) = 240(2)) <0, o'(x) =

dz
— ¢ 24%5(z) decreasing on T
— e % (1) < e 24%04(20)
= o(z) <0
if x > xg. Similarly,
o'(x) > —2A0(x) = o' (x) + 2A0(z) > 0
d 2Ax
— 247 (5'(2) + 240(2)) > 0, o'(z) = (c -~ o(x))
x

increasing on [

— 2% (1)
— 2% (z) < 24700 ()
= o(z) <0

if © < xy. Therefore, o(z) < 0 for all x € I. But obviously, o(z) > 0 for all
x from its definition. Therefore, o(z) = 0, i.e., y(x) = z(x). Therefore, the

solution is unique. O
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10.3 Existence and Uniqueness Theorem for Lin-
ear First Order ODE’s

Here, we consider the special case of a linear DE

% = a(z)y + b(z).

Theorem 10.11 (Existence and uniqueness theorem for linear first prder DE’s)
Let a(z) and b(z) be continuous throughout an interval I. Let zy be an
interior point of I and let y9 be arbitrary. Then there exists a unique
function y(x) with y(xg) = yo satisfying dy/dx = a(z)y + b(z) throughout
I

Proof. Let a(x) and b(x) be continuous throughout an interval I. Let x( be
an interior point of I and let yo be arbitrary. Let A = max({|a(z)|: z € I}).

*

Inductively define functions** on I by yo(x) = yo and

Ynt1(T) = yo + /” (a(t)yn(t) + b(¢)) dt.

Zo

Then

st [ (@t (1) + b(0)) dt

0

() = Y1 ()] = .
- / (at)yn—a(t) + b(0)) dt

—| [ 1a(®) (s ®) — y-a®)) .

Assuming by induction that

n72|$71'0‘n
[Yn—1(2) — yn—2(x)] < A m’

** Assuming by induction that yn (t) is continuous, a(t)yn(t) + b(t) is continuous through-
out I and thus integrable, so the definition of yn41(z) makes sense. Then yn4+1(x) is also
differentiable, i.e., y; ;(x) = a(z)yn(z) + b(z), and thus continuous, so the induction can
proceed.
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we then have

[ 1000 a6 = a0 | <

[¢]

x n—1
/ aan2li=mol Y 4
20 (n—1)!
< An—l |Jj - x0|n
- n!

?

thereby completing the induction. Therefore,

Anflan
[Yn () — yn—1(2)| < T

where « is the width of I. The rest of the proof is as before. O

10.4 Existence and Uniqueness Theorem for Lin-

ear Systems

A system of differential equations consists of n equations involving n functions
and their derivatives. A solution of the system consists of n functions having
the property that the n functional equations obtained by substituting these
functions are their derivatives into the system of equations, and they hold for

every point in some domain D. A linear system of differential equations has the

form*
d
% = a11($)y1 + a12(1')y2 + -+ aln(l')yn + bl(x)’
d
% = az21(z)y1 + az2(z)y2 + - + a2n (¥)yn + ba(z),
d
S s ()1 + 2@+ + G (@) + ()

We can write the system as

Q:AY—FB,
dx

*The point is that y1,y2,...,yn and their derivatives appears linearly.
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where
ain(z) - a(2) y1(2) bi(z)
azi(z) -+ azn(z) y2(2) ba ()
= . . ) Y = . ) B= .
QAn1 (x) T ann(m) Yn(x) bn ()

Theorem 10.12 (Existence and uniqueness theorem for linear systems of n DE’s)
Let A(x) be a matrix of functions, each continuous throughout an interval
I and let B(z) be an n-dimensional vector of functions, each continuous
throughout I. Let x¢ be an interior point of I and let Yy be an arbitrary
n-dimensional vector. Then there exists a unique vector of functions Y (z)
with Y (zo) = Y satisfying

dY

e A(z)Y + B(x)

throughout 7.*

Proof. Let A(x) be a matrix of functions, each continuous throughout an in-
terval I and let B(x) be an n-dimensional vector of functions, each continuous
throughout I. Let xy be an interior point of I and let Yy be an arbitrary

n-dimensional vector.

Let A = max({||A(z)| : = € I}). Inductively define Yo(z) = Y, and

x

Yoale) + Yo+ [ (ADY.(0)+B)de.

Zo

vector obtained by

integrating componentwise



158 CHAPTER 10. EXISTENCE AND UNIQUENESS THEOREMS

Then

< A"a",

where « is the width of I. The rest of the proof is essentially the same as
before. 0

Recall Theorem 8.5 (p. 90) restated here as follows.

Theorem 10.13 (Theorem 8.5)

Let = p be an ordinary point of y” + P(z)y’ + Q(x)y = 0. Let R be the
distance from p to the closest singular point of the DE in the complex plane.
Then the DE has two series yi(z) = > oo apz™ and yo(x) = > 0o bpa™
which converge to linearly independent solutions to the DE on the interval
|z —p| < R.*

Proof. Let x = p be an ordinary point of y” + P(x)y’ + Q(x)y = 0. Let R be
the distance from p to the closest singular point of the DE in the complex plane.

We first claim that if f(z) is analytic at p and R is the radius of convergence
of f, then for r < R, there exists an M (depending on r) such that

1 M
Z ) il
— || <= (+)
for all n € N. To prove this claim, since
- 1 n n
Z Ef (p)r™ = f(r)
n=0

converges absolutely, let

M= )l

n=0
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Then )
— f (p)r™ < M,
n!

so Equation (x) holds. Therefore, our claim holds.

Let w(z) be a solution of ¢y’ + P(z)y’ + Q(z)y = 0. Being a solution to
the DE, w is twice differentiable. Furthermore, differentiating the DE gives a
formula for w”’ in terms of w,w’,w”. Continuing, w is n times differentiable
for all n, so w has a Taylor series. We now wish to show that the Taylor series

of w converges to w for |z — p| < R.

Since |z — p| < R, there exists an a such that |z —p| < a < R. As above,
find constants M such that

1 M 1 N
Pl <= e < =
for all n € N. Let
M N
A(Z) = 1 ﬂ’ (Z) = 1 zZ—p
Note that
. 5 2 P n
A(z):M<1+ p+( p) +-~-+< p) + )
a a
SO
A(p) = M,
M
Al(p) ==
(p) =~
M
A//(p) = 2¥a
A (p) = nl = > [ PO (p)]
a
Similarly,
B (p) =nl— > ‘Q(") (p)’
Consider
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Let v(z) be a solution of Equation (xx) satisfying v(p) = |w(p)| and v'(p) =
|w’(p)]. In general, w(™ (p) = C1w'(p) + Cow(p), where C; and Cy are arbitrary
constants depending on P and @ and their derivatives at p, e.g.,

w” = P(p)w'(p) + Q(p)w(p),

" = P'(p)w'(p) + P(p)w” (p) + Q' (p)w(p) + Q(p)w' (p)
= P'(p)w'(p) + P(p) (P(p)w'(p) + Q(p)w(p)) + Q' (p)w(p) + Q(p)w' (p)
= (P%(p) + P'(p) + Q(p)) w'(p) + (P(p)Q(p) + Q' (p)) w(p).

Similar formulas hold v(™ (p) involving derivatives of A and B at p.

Using |P(”)(p )| <A (™) (p) and |Q m)( (p)| < B™)(p) gives |w(")(p)} < v™(p).
The Taylor series of W about p is ano an (2 —p)", where a, = w™ (p)/n!;
the Taylor series of v about p is > oc by (2 — p)", where b, = v(™(p)/nl.

Since we showed that |a,| < by, the first converges anywhere the second does.
So we need to show that the Taylor series of w(z) has a radius of convergence
equal to a (this implies that the Taylor series for w converges for n — pk, but
a < R was arbitrary). We have

M N
"o_ ’
Tio=t ="
Let u = ( ) /a. Then
,_dvidy
du a du

i'de 1P
Y24z T a2did

Then we have

1 d%v M 1dv N

(172@: 17uadu+1—uv’
d?v dv 9
(l—u)dQ*aMd +a*Nv.

Write v = ZZOZO Yu™. Using its first radius of convergence, we have

n
o —
U:%UHZ%( ap> Z:(Z_p)n:bn(z_p)nv
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which implies that v, = b,a™ > 0. Note that

(o) o0
= Z nypu Tt = Z (n+ 1) ypr1u”,
n=1 n=0

N
adjust indices
oo

= Z (n+ 1) nyppu™ ! = Z (n+2)(n+1)ypq2u”.
n=0

n=1

o
du?

adjust indices

Now we have

(1—w Z n+2)(n+1)ypu” = ZaM (n+1)yppru™ + ZGQN%LU",
n=0 n=0
Y (n+2) (n+1) yppou” D (n+2) (n+1) ypou”
n=0 _ n=0
- Z (n+2)(n+1) ypou™! - Z (n+ 1) nyppru™.
n=0 n=0

Therefore,
Zn+2 Y(n+1)Yptou Z n+1 n+aM)’yn+1+a2N’yn]u”,

so it follows that

(n+2) (n+1) otz = (n+1) (aM +n) yns1 + a* Ny,
aM +n a’N~y,
n+2 Tnt1 ¥ n+2’
Yotz _n+aM | a®N o,
Yn+1 n+2 N+ 2 Yni1

Tn+2 =

for all n € N. Since v, /vn+1 < 1, we have

a’N v,
im —_—
n—oo N+ 2 Ypi1

Therefore,

lim 1" —140=1.
n—0o0 Y11

So by the ratio test (Equation (8.2) of Theorem 8.2, p.88), the radius conver-
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gence of

n o _ 7’”’ — n: — ==
S =3 e opr = om (7)<
n=0 n=0 n=0
is a. O

The point of Theorem 8.5 is to state that solutions are analytic (we already
know solutions exists from early theorems). The theorem gives only a lower

bound on the interval. The actual radius of convergence may be larger.
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Numerical Approximations

11.1 Euler’s Method

Consider y' = f(z,y), where y(zo) = yo. The goal is to find y(zenq). Figure
11.1 shows this idea. We pick a large N and divide [z, Zend] into segments of

actual value

% Y approximate value
Kyl Y2
Ty zot+h  xot+2h Tend = TN
= 1‘1 = :lj2

Figure 11.1: Graphical representation of Euler’s method.

length h = (Zena — o) /N. Then

y(x1) = y(wo) +y' (o) (21 — o)
h

163
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is the linear/tangent line approximation of y(z1). Set

y1 = yo + hf(xo,y0) — y1 = f(z1),
yo =1 +hf(zi,51) — y2 = f(x2),
ys =yo + hf(z2,y2) — y3 = f(x3),

Yanswer = YN—1 + hf(fola nyl) — Yanswer ~ f(xend)~

Example 11.1. Consider y' = = — 2y, where y(0) = 1. Approximate y(0.3)

using a step size of h = 0.1. *

Solution. First note that g = 0. With a step size of h = 0.1, we have
T = 017 T = 02, Tr3 = 0.3.
Therefore,

Y1 = Yo +hf(2o,90) = 1+0.1(0 —2)
=1-02=0.8,

Y2 = 0.8+ hf(0.1,0.8) = 0.8 + h(0.1 — 1.6)
=0.8-0.1-1.5=0.8—0.15 = 0.65,

ys3 = 0.65 + hf(0.2,0.65) = 0.65 + h (0.2 — 1.3)
=0.65—0.1-1.1 =0.65 — 0.11 = 0.54.

Therefore, y(0.3) ~ 0.54.

What about the actual value? To solve the DE, we have

Y +2=ua,

e2xyl + 262zy _ £C€2w,

1 1
ye?® = /xe% dx = §$€2I — / 5621 dx

1 1
— 51’€2$ o ZeQw +C,
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where C' is an arbitrary constant. Therefore

1 1 -
y=35T- 4 + Ce™2",

Note that 1 5
y(O):1:>—Z+C:1:>C:Z,

so the general solution is

T Y =2z
SRt IS
Therefore,
5 06
y(0.3) =0.15—0.25 + 1€ ~ —0.1 4+ 0.68601 =~ 0.58601,
so y(0.3) = 0.58601 is the (approximated) actual value. O

11.1.1 Error Bounds

The Taylor second degree polynomial of a function y with step size h is given
by
y"(2)

y(a +h) =y(a) + hy'(a) + h? 5

for some z € [a, h], where h?y"”(2)/2 is the local truncation error, i.e., the error

in each step. We have
1/
2y (2) < %
2 T 2
if |y (z)] < M on [a, h]. Therefore, dividing h by, say, 3 reduces the local trun-

h h?

cation error by 9. However, errors also accumulate due to y, 41 being calculated
using the approximation of y, instead of the exact value of f(z,). Reducing h
increases N, since N = (Zeng — ®0) /b, so this effect wipes out part of the local

gain from the smaller h. The net effect is that
(overall error = global truncation error) < Mh,

e.g., dividing h by 3 divides the overall error only by 3, not 9.
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11.2 Improved Euler’s Method

To improve upon Euler’s method, we consider

Yn+1 = Yn h*a

where, instead of using f/(z,), it is better to use the average of the left and
right edges, so
fl(xn) + f/(anrl f(xna yn) + f(anrlv yn+1)

* = = .

2 2

Figure 11.2 illustrates this idea. However, we have one problem in that we do

T
Tn Tp+1

Figure 11.2: A graphical representation of the improved Euler’s method.

not know y,11 (that is what we are working out at this stage). Instead, we fill

into the “inside” y,,41 from the original Euler’s method, i.e.,

(f(-rnvyn) + f(xn+1a Yn + hf(xnvyn))) )

DN | =

ie.,

h
Yn+1 = Yn + 5 [f(xna yn) + f(xn+1ayn + hf(frm yn))] .

This improves the local truncation error from h? to h3.
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11.3 Runge-Kutta Methods
We again modify Euler’s method and consider
Yn+1 = ynh * .

At each step, for x, we use some average of the values over the interval [y, yn+1]-

The most common one is x,, + h/2. Figure 11.3 illustrates this idea. Set

T Tn + n/2 Tpi1=2Tn + h

Figure 11.3: A graphical representation of the Runge-Kutta Methods.

knl = f(x'na yn)7

1 1
knz = f(xn + ih,yn + Qhknl) 5

1 1

kna = f(xn + §h7yn + Qhkn2> 9
1 1

kn, = f(mn + ih,yn + Qhkn3> .

Use b
Yn+1 = Yn + 6 (kn1 + 2kn2 + 2]{”3 + 3kn4) .

This gives a local truncation error proportional to A°.
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